
WORDS MADE FLESH
Code, Culture, Imagination
Florian Cramer

Me dia De s ign Re s e arch
Pie t Z w art Ins titute
ins titute for pos tgraduate s tudie s and re s e arch
W ille m de Kooning Acade m y H oge s ch ool Rotte rdam

3

ABSTRACT: Executable code existed centuries before the invention
of the computer in magic, Kabbalah, musical composition and exper-
imental poetry. These practices are often neglected as a historical
pretext of contemporary software culture and electronic arts. Above
all, they link computations to a vast speculative imagination that en-
compasses art, language, technology, philosophy and religion. These
speculations in turn inscribe themselves into the technology. Since
even the most simple formalism requires symbols with which it can
be expressed, and symbols have cultural connotations, any code is
loaded with meaning. This booklet writes a small cultural history
of imaginative computation, reconstructing both the obsessive persis-
tence and contradictory mutations of the phantasm that symbols turn
physical, and words are made flesh.

Media Design Research
Piet Zwart Institute
institute for postgraduate studies and research
Willem de Kooning Academy Hogeschool Rotterdam
http://www.pzwart.wdka.hro.nl

The author wishes to thank Piet Zwart Institute Media Design Research for the
fellowship on which this book was written.

Editor: Matthew Fuller, additional corrections: T. Peal

Typeset by Florian Cramer with LaTeX using the amsbook document class and the
Bitstream Charter typeface.
Front illustration: Permutation table for the pronounciation of God’s name, from
Abraham Abulafia’s Or HaSeichel (The Light of the Intellect), 13th century

c©2005 Florian Cramer, Piet Zwart Institute
Permission is granted to copy, distribute and/or modify this document under the
terms of any of the following licenses:

(1) the GNU General Public License as published by the Free Software Foun-
dation; either version 2 of the License, or any later version. To view
of copy of this license, visit http://www.gnu.org/copyleft/gpl.html or
send a letter to the Free Software Foundation, Inc., 59 Temple Place—
Suite 330, Boston, MA 02111-1307, USA.

(2) the GNU Free Documentation License as published by the Free Software
Foundation; either version 1.2 of the license or any later version. To view
of copy of this license, visit http://www.gnu.org/copyleft/fdl.html or
send a letter to the Free Software Foundation, Inc., 59 Temple Place—
Suite 330, Boston, MA 02111-1307, USA.

(3) the Creative Commons Attribution-ShareAlike License; either version 2.0
of license or any later version. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305,
USA.

Your fair use and other rights are not affected by the above.

http://www.pzwart.wdka.hro.nl
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/fdl.html
http://creativecommons.org/licenses/by-sa/2.0/

Contents

Chapter 1. Introduction: In Dark Territory 7

Chapter 2. Computations of Totality 11
Exe.cut[up]able statements 11
Magic and religion 14
Pythagorean harmony as a cosmological code 20
Kabbalah 29
Ramon Llull and Lullism 36
Rhetoric and poetics 41
Combinatory poetry and the occult 47
Computation as a figure of thought 53

Chapter 3. Computation as Fragmentation 57
Gulliver’s Travels 58
The Library of Babel 61
Romanticist combinatorics 63
Concrete poetry 65
Max Bense and “information aesthetics” 66
Situationism, Surrealism and psychogeography 70
Markov chains 73
Tristan Tzara and cut-ups 75
John Cage’s indeterminism 77
Italo Calvino and machine-generated literature 80
Software as industrialization of art 81
Authorship and subjectivity 83
Pataphysics and Oulipo 88
Abraham M. Moles’ computational aesthetics 92
Source code poetry 93
Jodi 95
1337 speech 98
Codework 99

Chapter 4. Automatisms and Their Constraints 103
Artificial Intelligence 103
Athanasius Kircher’s box 105

5

6 CONTENTS

John Searle’s Chinese Room 106
Georges Perec’s Maschine 109
Enzensberger’s and Schmatz’s / Czernin’s poetic machines 111
Software dystopia: Jodi 112
Software dystopia: Netochka Nezvanova 114
From dystopia to new subjectivity 118

Chapter 5. What Is Software? 121
A cultural definition 121
Software as practice 122
Software versus hardware 123
Conclusion 124

References 127

List of Figures 133

Index 135

CHAPTER 1

Introduction: In Dark Territory

FIGURE 1. “300,000 pages of code. Or 60 minutes of
triple-X rubber-and-leather interactive bondage porno.
Technology can be used for beauty, or debasement. And
until you plug it in, you’ll just never know.”

The 1995 Steven Seagal action film Under Siege 2 tells of an elab-
orate flow of codes: Villain Travis Dane (Eric Bogosian) hijacks a
train and puts a CD-ROM with missile launch codes into a computer
to assume control over a global, satellite-based weapon system and
blackmail the U.S. government. He trades binary access codes for
extortion money, money that itself is digital zeros and ones flowing
around the glob to offshore bank accounts. A phantasm of codes
as an omnipotent force rules the hijacked train. Seagal’s character,
one man army Casey Ryback, and his Apple Newton pocket computer
(which sends out a critical fax message to the U.S. army), embody the
anti-phantasm. Ryback stands for old-fashioned physics battling sym-
bolic code wizardry, hardware against software. When Ryback kills
Dane in the end and a train crash cuts off the satellite link, physics
wins over logic. It is furthermore the victory of one genre within the

7

8 1. INTRODUCTION: IN DARK TERRITORY

film over another, fistfighting realism over utopian techno imagina-
tion, just like in every fantastic action film from James Bond to The
Terminator where villain science fiction technology is doomed to be
destroyed in the end.

This booklet attempts to show that algorithmic code and compu-
tations can’t be separated from an often utopian cultural imagination
that reaches from magic spells to contemporary computer operating
systems.1 “300,000 pages of code. Or 60 minutes of triple-X rubber-
and-leather interactive bondage porno. [. . .] And until you plug it
in, you’ll just never know.” This dialogue line sums up utopian and
dystopian imagination reaching from omnipotence to obscenity pro-
jected onto computer codes. In the end, the decoding of the codes
is not a formal, but a subjective operation. Boiling down to either
“beauty” or “debasement,” two classical modes of aesthetics since
18th century philosophy, these codes are ultimately about human per-
ception and imagination.

The science fiction of the film scene relies on a gap between
the computer code and a meaning made up by the human viewer.
This meaning can’t be perceived until the initial code has been trans-
formed several times, from the zeros and ones on the CD-ROM to, for
example, pixels on a video screen and eventually a “triple-X rubber-
and-leather interactive bondage porno” image in the mind of the spec-
tator. The wider the gap between code and perception, the wilder
the imagination. The more abstract a code, the more speculative
the meaning that may be read into that code. Long before Steven
Seagal, codes stirred up cultural imagination just because they were
open to any reading. Western culture believed Egyptian hieroglyphs
to hold divine powers until the Rosetta translation stone, found by
Napoleon’s army in the early 19th century, debunked them as ordi-
nary writing. Hieroglyphs on Freemasonic buildings and documents
are a remnant of the older belief. The 16th century Voynich Man-
uscript, written in an as yet unknown alphabet, unknown language
and containing obscure pictorial illustrations, has today not yet been
deciphered although many expert cryptographers have tried. It is not
even clear whether the manuscript contains a cypher at all. It might
have been crafted just to create the illusion of a cryptogram. Accord-
ing to other theories, it might be written in a private Thai or Viet-
namese alphabet, or by Cathar heretics in a mixture of Old French

1And which includes the system this paper was written on: the TeX typesetting
system, the vi editor and the GNU utilities, each designed by one major specu-
lative thinker of software culture, Donald Knuth, Bill Joy and Richard Stallman
respectively.

1. INTRODUCTION: IN DARK TERRITORY 9

and Old High German. Artistic speculations on the Voynich Manu-
script include a story by science fiction writer Colin Wilson who links
it to Lovecraft’s Necronomicon. In a contemporary orchestra piece
by Swiss-German composer Hanspeter Kyburz, it serves as a musical
score that anticipates 20th century experimental score notations of
John Cage and others.

As speculative codes, Egyptian hieroglyphs (in their two differ-
ent historical readings), the Voynich Manuscript and Travis Dane’s
CD-ROM render “code” ambiguous between its traditional meaning
of a cryptographic code, i.e. a rule for transforming symbols into
other symbols, and code in its computational meaning of a transfor-
mation rule for symbols into action. Ever since computer program-
mers referred to written algorithmic machine instructions as “code”
and programming as “coding,” “code” not only refers to cryptographic
codes, but to what makes up software, either as a source code in a
high-level programming language or as compiled binary code, but in
either case as a sequence of executable instructions. With its seem-
ing opacity and the boundless, viral multiplication of its output in
the execution, algorithmic code opens up a vast potential for cultural
imagination, phantasms and phantasmagorias. The word made flesh,
writing taking up a life of its own by self-execution, has been a utopia
and dystopia in religion, metaphysics, art and technology alike. The
next chapters will reconstruct the cultural and imaginative history
of executable code. From magic spells to contemporary computing,
this speculative imagination has always been linked to practical—
technical and artistic—experimentation with algorithms. The oppo-
site is true as well. Speculative imagination is embedded in today’s
software culture. Reduction and totality, randomness and control,
physics and metaphysics are among the tropes it is obsessed with,
often short-circuiting their opposites. Computer users know these ob-
sessions well from their own fears of crashes and viruses, bloatware,
malware and vaporware, from software “evangelists” and religious
wars over operating systems, and their everyday experience with the
irrationality of rational systems. After all, “until you plug it in, you’ll
just never know.”

CHAPTER 2

Computations of Totality

Exe.cut[up]able statements

Date: Tue, 14 Jan 2003 21:47:42 +1100
From: mez <netwurker@HOTKEY.NET.AU>
To: WRYTING-L@LISTSERV.UTORONTO.CA
Subject: Re: OPPO.S[able].I.T[humbs]ION!!

Hello Arch.E.typal T[Claims of the n]ext W[h]orl.d
--------------------(mo.dueling 1.1)-------------------

N.terr.ing the net.wurk---
::du n.OT enter _here_ with fal[low]se genera.tiffs + pathways poking
va.Kant [c]littoral tomb[+age].
::re.peat[bogging] + b d.[on the l]am.ned.
::yr p[non-E-]lastic hollow play.jar.[*]istic[tock] met[riculation.s]hods
sit badly in yr vetoed m[-c]outh.

Pr[t]inting---
::spamnation. .r[l]u[re]ins. .all.

Exe.cut[up]able statements---
::do knot a p.arse.r .make.
::reti.cu[t]la[ss]te. yr. text.je[llied]wells .awe. .r[b]ust.

R[l]un[ge]ning the pro.gram[mar]---
::re.a[vataresque]ct[ors|actrestles] + provoke @ yr response per[b]il[e].
::con.Seed.quenches r 2 b [s|w]allowed.
::big boots make filth k.arm[N limb.ic cyst.M]a.

A hybrid of net art, poetry, program and markup code, this piece by
Australian net.artist mez (Mary Anne Breeze) reflects a contempo-
rary imagination of software, computation and networks, disassem-
bling it into its smallest symbolic particles and reassembling them
into a private language. (mo.dueling 1.1) reads as the name of a com-
puter program with a version number. Through its pointed and brack-
eted word fragments it expands, like running software code, into the
words “module,” “duel” and “dueling.” The syntactical notation is
taken from wildcards and regular expressions in programming lan-
guages and Unix command line interpreters forming an archetypical
world. In mez’s own language “mezangelle,” it is called “Arch.E.typal

11

12 2. COMPUTATIONS OF TOTALITY

T[Claims of the n]ext W[h]orl.d,” expanding into hardware/software
architectures—“arch” in computer tech lingo—, “claims of the next
world,” and whores. Slang and sexual language exposes mezangelle
as a messy code, one that does not run on machines, but on a human
imagination that encompasses machines and bodies alike. Unlike in
the Steven Seagal action movie and the Voynich Manuscript, the se-
mantic associations are not superimposed and therefore external to
the code, but are embedded into the code proper. “Exe.cut[up]able
statements” and “pro.gram[mar],” for example, are self-reflections
of the text as “executable statements” and “program grammar.” The
words serve as a source code which generates “execute,” “executable,”
“cut-up,” “able” in the first word, “programmer,” “grammar,” “pro-
gram,” “gram” in the second. There is simultaneous contraction and
expansion, regularity and irregularity, instruction and chaos in these
words. Like a piece of software code that gets executed, the writ-
ing expands beyond itself, generating dozens to hundreds of possible
readings. As it says, its “big boots make filth,” and text disperses in a
“spamnation.” “Spamnation” also is a technical description of mez’s
E-Mail work that is sent, spam-style, to a large number of net cultural
mailing lists at once.

From a literary history viewpoint, the word hybrids and ono-
matopoetics of mezangelle resemble the poetic language in James
Joyce’s last novel Finnegans Wake:

The fall (bababadalgharaghtakamminarroninikonn-
bronntonnerronntuonnthunntrovarrhounawnskawnto-
ohoohoordenenthurnuk!) of a once wallstrait oldparr
is retaled early in bed and later on life down through
all christian minstrelsy. The great fall of the offwall
entailed at such short notice the pftjschute of Finnegan,
erse solid man, that the humptyhillhead of humself
prumptly sends an unquiring one well to the west
in quest of his tumptytumtoes: and their upturnpike-
pointandplace is at the knock out in the park where
oranges have been laid to rust upon the green since
devlinsfirst loved livvy. What clashes here of wills gen
wonts, oystrygods gaggin fishygods! Brékkek Kékkek
Kékkek Kékkek! Kóax Kóax Kóax! Ualu Ualu Ualu!
Quaouauh!

This paragraph, from the first page of the book, demonstrates Joyce’s
word poetics while referencing its literary prototypes. The ono-
matopoetic “Bkkek Kkkek [. . .]” is taken from Aristophanes’ 4th

EXE.CUT[UP]ABLE STATEMENTS 13

century B.C. Greek comedy The Frogs. “Humptyhillhead,” “prumptly”
and “tumptytumtoes” allude to Humpty Dumpty, the nursery rhyme
character and fantastic creature in Lewis Carroll’s Through the
Looking-Glass, the sequel to Alice in Wonderland. In its sixth chapter,
Alice and Humpty Dumpty discuss the seemingly nonsensical poem
Jabberwocky:

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

Humpty Dumpty explains that “slithy” is a combination of “lithe
and slimy”: “‘Lithe’ is the same as ‘active.’ You see it’s like a
portmanteau—there are two meanings packed up into one word.”
Originally, and before it appeared in the novel, the “Jabberwocky”
poem had been written in 1855 and published under Carroll’s proper
name Charles L. Dodgson as a parody of romantic poetry. Dodg-
son was a mathematician by profession and taught at Oxford. As
Martin Gardner’s annotated edition of the two Alice novels shows,—
which also became published as one of the first electronic hypertext
books ever—the books are rich with mathematical and logical puns
and humor. In the “Humpty Dumpty” chapter, absurdity stems from
a seemingly straightforward, pseudo-logical explanation of the non-
sense poem. Humpty Dumpty takes the attitude of a mathematician
or logician who reads the poem like a formula. Joyce’s portmanteau
words hybridize languages, nature and history, but while they hardly
ever mix in formal or machine language, they work as a kind of re-
verse computer code that expands multiple input into a single output.
His novel is infinitely looping, with its last page of the novel ending
where the first page begins. Marshall McLuhan, “Joycean hippie” (as
Nam June Paik called him) and founder of the term “media theory,”
took Finnegans Wake as his “textbook.”1 According to his biographer
Donald Theall, he perceived the blend of “orality, tactility, simultane-
ity and synaesthesia” in the novel as a blueprint for a “techno-poetic”
language.2

Having created, more or less, the field of “media” with its endless
unresolved terminological ambiguities and contradictions, McLuhan’s
techno imagination appears to bridge the gap between the technopo-
etic codework of mez and her net contemporaries on the one hand

1According to http://www.geocities.com/hypermedia_joyce/theall3.html
2According to http://www.mindjack.com/feature/mcluhan.html

http://www.geocities.com/hypermedia_joyce/theall3.html
http://www.mindjack.com/feature/mcluhan.html

14 2. COMPUTATIONS OF TOTALITY

and its protoype in Carroll and Joyce on the other.3 “Spamnation,”
code flowing out and spilling over, is the common denominator of
Carroll’s “slithy toves,” Joyce’s “riverrun” and mez’s collapsing of
program, grammar and programmer into a “pro.gram[mar]”. All
three artists write in the aesthetic mode of the sublime; the cate-
gory of the boundless, unshapely, obscure, threatening first described
in the Greek rhetorical treatise of Pseudo-Longinus, reinvigorated in
the 18th century aesthetic theories of Burke, Kant and Schiller,4 and
which paved the ground for the gothic novel and other forms of dark
romanticism (up to the gothic, dark wave and “new romantic” pop
cultures that originated the 1980s). Computer and software imagi-
nation is only inscribed into mez’s piece. The software her coding
conceives of is a monster, an alien resembling that of the eponymous
Science Fiction movies. Unlike the “cyberpunk” Science Fiction imagi-
nation of the late 1980s and early 1990s whose sublime technopoesis
consisted of an imaginary pictorial hyperrealism, mez’s monsters are
made up purely by abstract symbols and computational processes.

Magic and religion

Words becoming flesh, the symbolic turning physical – these are by
no means recent phantasmagorias and speculations. The beginning
of the Gospel of John in the New Testament reads:

1:1 In the beginning was the Word, and the Word was
with God, and the Word was God. [. . .]
1:14 And the Word was made flesh, and dwelt among
us, (and we beheld his glory, the glory as of the only
begotten of the Father,) full of grace and truth.

This figure of thought, of a speech act that affects physical matter
instantly and directly, is magical in its root. Material creation from
the word is an idea central to magic in all cultures; it is precisely

3Outside the Anglo-American tradition, the word recombinations and cosmo-
logical imagination of Russian futurist poet Velimir Khlebnikov manifests another
pretext which itself triggered the quasi-computational structuralist poetics of Ro-
man Jakobson

4W. Rhys Roberts, editor. Longinus on the Sublime. Cambridge University Press,
Cambridge, 1899. [85], Edmund Burke. A Philosophical Enquiry into the Origin
of our Ideas of the Sublime and Beautiful. Oxford University Press, Oxford, 1990
(1757). [15], Immanuel Kant. Critique of the Power of Judgment. The Cambridge
Edition of the Works of Immanuel Kant in Translation. Cambridge University Press,
Cambridge, 2001. [53], Friedrich Schiller, On The Sublime, http://members.aol.
com/abelard2/schiller.htm

http://members.aol.com/abelard2/schiller.htm
http://members.aol.com/abelard2/schiller.htm

MAGIC AND RELIGION 15

what magic spells perform. Magic therefore is, at its core, a technol-
ogy, serving the rational end of achieving an effect, and being judged
by its efficacy. According to scholar Franz Dornseiff and his 1922 Ger-
man study on the alphabet in mysticism and magic,5 the idea of divine
creation through the letter has its roots in early Middle Eastern and
Egyptian mystic cults. Gnosticism transformed it into theurgy, the
invocation of divine powers for achieving concrete, material effects.
Adopting many of its concepts from Gnosticism and Neoplatonist phi-
losophy, Christianity introduced the prayer as its own form of theurgy,
itself a practical communicative act between the individual, the di-
vine and physical matter through a symbolic agent, or, medium. Mag-
ical thinking is even more strongly present in the Catholic Christian
idea of transubstantiation, the transformation of wine into blood and
bread into the body of Christ effected through the liturgic speech act
of the priest.—The magical formula “hocus pocus” is derived from the
Catholic liturgic formula “hoc est corpus meum,” this is my body.6—
Rationalization of this remnant of magical thinking occurred within
Christianity itself when Protestantism abandoned the concept of tran-
substantiation and thought of communion service as a purely allegor-
ical practice.7

Religion sublimates magic as a common, popular into a privilege
of the god creating the world and, subsequently, his son. Magic
wasn’t considered occult until religion and later science and technol-
ogy rivalled and marginalized it. The technical principle of magic,
controlling matter through manipulation of symbols, is the technical
principle of computer software as well. It isn’t surprising that magic
lives on in software, at least nominally. References to magic abound
in computer software branding, from programs like Partition Magic,
Magix Musicmaker, the /etc/magic filetype database in Unix to the
program genre of “Setup Wizards” or operating systems like Sorcerer
GNU/Linux in which software packages are installed with the com-
mand “cast.” A Google search on “magic” and “software” today yields
more than fifteen million results (see figure 1). Searching the word

5Franz Dornseiff. Das Alphabet in Mystik und Magie. Teubner, Leipzig, Berlin,
1925. [29].

6This link was first made by English prelate John Tillotson in 1742, according
to The American Heritage Dictionary of the English Language

7A rationalization that has been progressively extended in non-evangelical
Protestant theology to practically all miracles and para-magical acts described in
the Bible, most or all of which were subsequently declared allegorical.

16 2. COMPUTATIONS OF TOTALITY

FIGURE 1. Result of a Google search on “software” and “magic”

“magic” only brings up the homepage of a software company as the
third result.

Such links between magic and software remain metaphorical
though unless they are based on common concepts of formalism, lan-
guage and execution of statements. Since magic was marginalized in
Western culture through science, it went underground. While magical
practices as those of Aleister Crowley claimed to be “scientific,” they
doubtlessly existed outside a system of science and rationality which
before, until roughly the late 17th century, still had included occult
science in its canon. Of the “two cultures” described by scientist and
novelist C.P. Snow in 1956, hard sciences and engineering versus hu-
manities and culture, Crowley’s magic clearly sides with the second
despite its scientific claims, de-emphasizing magic as a practical tech-
nique in favor of magic as an occult philosophy of life. His influence
was strong particularly in pop and non-mainstream culture, forming
one philosophical formulation of the underground per se. Followers
of Crowley include experimental filmmaker Kenneth Anger, the in-
dustrial music movement founded by Genesis P-Orridge and others,
The Rolling Stones whose song Sympathy for the Devil was Crowley-
inspired and The Beatles who put Crowley on the cover of St. Pepper’s
Lonely Hearts Club Band.

MAGIC AND RELIGION 17

Magic as Crowleyan occult philosophy, art and programming con-
verged in the poetic language experiments of Brion Gysin and William
S. Burroughs:

IN THE BEGINNING WAS THE WORD
IN THE BEGINNING WAS WORD THE
IN THE BEGINNING WORD THE WAS
IN THE BEGINNING WORD WAS THE
IN THE THE BEGINNING WAS WORD
IN THE THE BEGINNING WORD WAS
IN THE THE WAS BEGINNING WORD
IN THE THE WAS WORD BEGINNING
IN THE THE WORD BEGINNING WAS
IN THE THE WORD WAS BEGINNING
IN THE WAS BEGINNING THE WORD
IN THE WAS BEGINNING WORD THE
[. . .]8

The poem shuffles its words according to a formal algorithm. Its to-
tal of 720 permutations were calculated, in the early 1960s, on a
Honeywell computer with the aid of mathematician Ian Sommerville.
Spoken by the author on a tape recording, this and other permuta-
tion poems of Gysin were not solely mathematical computations, but
also incantations. It therefore does not seem incidental that the begin-
ning of the Gospel of John was chosen to be computed. The power
of creation in the word is being resurrected in the text from a pre-
viously hidden potential. Combinatory computation turns into the
technical agent, or spell of this magic act, but its power is ultimately
embodied by the speaking voice. The principle of text cut-ups, as they
were developed and practiced by Gysin and Burroughs (see p. 76) is
contained also in the permutational poems since they work with the
same principle of slicing out and shuffling portions of a text: lines in
Gysin’s poems, columns in Gysin’s and Burroughs’ cut-up prose. In
his essay, Cut-ups self-explained, Gysin argues that “Words have a vi-
tality of their own.” Through permuting them, he writes, one can
make them “gush into action.” The result is an “expanding ripple of
meanings which they [i.e. the words] did not seem to be capable of
when they were struck into that phrase.”

Likewise, William S. Burroughs’ essay The Electronic Revolution,
which theoretically sums up, although not very coherently, his cut-up
poetics, begins with the sentence: “In the beginning was the word

8Brion Gysin. Permutation poems. In: William S. Burroughs. The Third Mind.
Viking, New York, 1978. [42].

18 2. COMPUTATIONS OF TOTALITY

and the word was god and has remained one of the mysteries ever
since. The word was God and the word was flesh we are told. In the
beginning of what exactly was this beginning word? In the beginning
of WRITTEN history.”9 In The Electronic Revolution, written in 1970,
the tape recorder takes the place of the technical agent for dissect-
ing and reassembling language and cultural codes for which Gysin
employed the computer. But for both writers, technology is a formal
means to ultimately manipulate meaning, not formalisms, whereas a
computer program, be it a compiler, a word processor, an image or
sound manipulation program, is conceived of as a symbolic formalism
employed for an equally formal manipulation of symbols. Burroughs’
and Gysin’s insistence on the cultural power of speech acts and media
manipulation instead aims at a programmation that is semantic, not
formalist. So they transfigure the cut-up method from a formalism
to a technique that is semantic in itself, being an occult and magical
practice likened to drugs and ecstatic experience.

Another such technical device, Gysin’s Dream Machine, is a visual
flicker generator based on a visual pattern cut into a cylindric piece of
cardboard rotating on a record player. The visual frequencies it gener-
ates can interfere with brain frequencies and create optical illusions, a
psychedelic technology used also in Tony Conrad’s experimental films
from the 1960s, and with roots in military behaviorist research. That
technology is semantic, ecstatic and magic is a point made also in an
1984 underground movie aptly called Decoder which stars Burroughs
and Genesis P-Orridge in cameos and whose accompanying Decoder
Handbuch [Decoder Handbook] includes texts by him and Crowley as
background material.10

According to anthropologist James George Frazer, it is a general
feature of magic that magical practices tend to cloud their technical
and formalist nature, enmeshing themselves with the semantics of
the objects and subjects they are intended to affect. In his study The
Golden Bough (1922), Frazer differentiates two types of magic, imi-
tative and contagious magic. In imitative magic, the action or effect
to be achieved is being mimetically reproduced, for example in the
Voodoo-like “attempt which has been made by many peoples in many

9William S. Burroughs. Electronic Revolution. Expanded Media Edition, Bonn,
1982. [19].

10Klaus Maeck and Walter Hartmann, editors. Decoder Handbuch. Trikont, Duis-
burg, 1984. [64]

MAGIC AND RELIGION 19

ages to injure or destroy an enemy by injuring or destroying an im-
age of him.”11 Contagious magic, on the other hand, works through
physical proximity, and is best exemplified, according to Frazer, by
“the magical sympathy which is supposed to exist between a man and
any severed portion of his person, as his hair or nails; so that who-
ever gets possession of human hair or nails may work his will, at any
distance, upon the person from whom they were cut.”12

Both operations can are fundamental operations in language and
art as well. Roman Jakobson, a founding theorist of 20th century lin-
guistic and literary structuralism, made Frazer’s concept of imitative
magic—or the principle of similarity—the basis of a new definition
of metaphor, and contagious magic—or the principle of proximity
or contiguity—the foundation of metonymy.13 In commercial com-
puter programs like Partition Magic, the relation between software
and magic is metaphorical in this sense of imitation and similarity;
the software is sought to achieve magical powers by referring to them
only nominally, putting them onto its label rather than into its code.

In Gysin’s and Burroughs’ cut-up poetics however, the technical
process renders itself magic not just metaphorically, but physical by
inclusion. The the opening phrase of the Gospel of John is a prime
example. Both the permutation poem IN THE BEGINNING WAS THE
WORD and The Electronic Revolution contain the magical spell of the
Gospel not as an allusive imitation, but as a physical inscription and
contagious agent, just like the scalp of an enemy ripped out and worn
on the body as an amulet. Through the cut-up process, the words re-
gain their original contagious quality and “gush into action,” as Gysin
puts it. Burroughs literally links cut-ups and linguistic contagion in
what is perhaps his best-known speculation—that language is a virus.
If language is a virus, then cut-up literature is about unleashing and
applying its viral potential. For Burroughs, the affinity of language
and viruses is quite literal. It amounts to more than the idea that
viruses could be created in language or, like in Richard Dawkins’ con-
cept of the “meme,” that certain speech acts had contagious effects.14

Burroughs stresses that

11James George Frazer. The Golden Bough. Macmillan, London, 1950. [35], p.
12

12ibid., p. 38
13Roman Jakobson. Two Aspects of Language and Two Types of Aphasic Distur-

bances. In Fundamentals of Language, pages 115–133. Mouton, The Hague, Paris,
1971. [50]

14Richard Dawkins. The Selfish Gene. Oxford University Press, Oxford, 1989
(1976). [28]

20 2. COMPUTATIONS OF TOTALITY

I have frequently spoken of word and image as
viruses or as acting as viruses, and this is not an
allegorical comparison.15

Burroughs’ language magic is contagious in a double respect. It has a
contagious effect and it is contagious in its very structure. It therefore
differs from Frazer’s contagious magic in which the contact is firstly
limited to one object and its bearer, and secondly not inscribed into
the system of signs itself. With his phantasmagoria of all-pervasive
infection that cannot be contained, Burroughs totally semanticizes
the mobilization of matter through symbols in the magical speech
act. This corresponds, oddly and in a non-canonical way, with older
philosophical concepts of codes permeating the cosmos.

Pythagorean harmony as a cosmological code

Pythagorean musicology. Pythagorean thinking is founded on
the idea that the world is organized in numerical proportions which
are coded equally into music and mathematics. There exists no record
of Pythagoras’ original philosophy though because it existed only as
secret knowledge within an occult society. Heraclitus is one of the
earliest purveyors of Pythagorean ideas: “Combinations, wholes and
not-wholes, conjunction and separation, concord and discord—out
of all things comes One, and out of One all things,” or, in a different
translation: “What goes against each other is joining; what strives
apart creates the most beautiful harmony.”16 When Pythagoras dis-
covered the arithmetic principle of the musical octave by splitting the
string of a monochord in half, and from that concluded that there was
a mathematical harmony of the cosmos, he founded an aesthetic phi-
losophy that closely linked art, science and nature and whose impact
was immense through the Renaissance and beyond.

Pythagorean aesthetics centers around the idea that beauty is
made up from mathematical proportions. The mathematical pro-
portions of sound were first described with the numbers 3-4-6 as
the relative numerical values of keynote, quint and octave. This
code was written down in the treatise De musica of Anicius Manlius

15William S. Burroughs. Electronic Revolution. Expanded Media Edition, Bonn,
1982. [19], p.59

16Jonathan Barnes, editor. Early Greek Philosophy. Penguin, Harmondsworth,
2002. [7]

PYTHAGOREAN HARMONY AS A COSMOLOGICAL CODE 21

FIGURE 2. Franchino Gaffurio, De Harmonia Musico-
rum (1518)

Boethius, a 6th century B.C. Latin philosopher.17 It remained canon-
ical until the invention of tempered tuning and Mersenne’s mathe-
matical musicology (see p. 106) in which intervals smaller than the
octave were no longer determined by absolute integer values, but rel-
ative to each other. On the title illustration of his 1518 treatise De
Harmonia Musicorum,18 the Italian Renaissance composer and musi-
cologist Franchino Gaffurio has himself portrayed teaching Boethius’
Pythagorean 3-4-6 code to his pupils. The picture illustrates the equiv-
alence of musical tuning and mathematical values with organ pipes
and a pair of compasses. With speech drawn in anticipation of comic
strip balloons, Gaffurio tells his pupils “Harmonia est discordia con-
cors,” harmony is concordant discord, the Pythagorean credo previ-
ously voiced by Heraclitus (figure 2).

17Boethius. De Musica. In Opera omnia. Firmin-Didot, Paris, 1882. [11]
18Franchino Gaffurio. De harmonia musicorum. Forni, Bologna, 1972 (1518).

[36]

22 2. COMPUTATIONS OF TOTALITY

This concept of harmony is very distinct from the modern under-
standing of the term, because it includes both melodics and harmon-
ics. In other words, a melody can, according to this concept, be har-
monic as well. Secondly, it integrates dissonance with consonance.
This understanding is implied already in the original Greek word “har-
monia” which literally means “joining” or “combining.” Beauty, it fol-
lows, is not plainly nice and agreeable, but made up of agreeable
and disagreeable elements in equal proportions. This is not only the
general principle of Pythagorean aesthetics, but also of any refined
classicism.19

Rhetoric of the acumen. In the 17th century, the joining of op-
posites became a principle of witty or “conceited” poetics and poetry.
This literature later became historicized as anti-classicist, “mannerist”
or “baroque.” Wit, or “acumen,” was a part of rhetoric and poetics
since the 16th century. It became systematically taught in Jesuitical
academia. Wit was considered the principle of epigram poetry, and
epigrams in turn functioned as the “subscriptio,” explanatory verse
underneath pictorial emblems. Emblems, allegorical images, were
hugely popular in the Renaissance since Italian humanist scholar An-
dreas Alciatus published the first emblem book in 1531.20 Just as desk-
top icons on computer operating systems were invented in the 1970s
in the Xerox PARC labs in order to simplify interaction with the com-
puter as a machine performing formal-logical manipulations of coded
symbols, emblems served to simplify and popularize interaction with
religious and philosophical meaning. They became an important part
of humanist education—and of Jesuit counter-reformational propa-
ganda, likewise based on the humanist canon. Seminal treatises on
epigrammatic wit, some of them covering also the creation of wit in
emblems, were written by the Jesuits Kazimierz Sarbiewski, Baltasar
Gracián and Emanuele Tesauro.21

19Like that of Winckelmann and Lessing in the late 18th century in their respec-
tive analyses of the Greek Laocoon sculpture, or the aesthetic philosophy of Walter
Pater; see Simon Richter. Laocoon’s Body and the Aesthetics of Pain: Winckelmann,
Lessing, Herder, Moritz, Goethe. Wayne State University Press, Detroit, 1992. [84]
and Harold Bloom, editor. Selected Writings of Walter Pater. Columbia University
Press, New York, 1982. [10]

20Andreas Alciatus. Emblematum Libellus. Wissenschaftliche Buchgesellschaft,
Darmstadt, 1991 (1542). [2]

21A comprehensive survey of their work can be found in Mercedes Blanco. Les
rhétoriques de la pointe. Librairie Honoré Champion, Paris, 1992. [9].

PYTHAGOREAN HARMONY AS A COSMOLOGICAL CODE 23

FIGURE 3. Diagram from Maciej Kazimierz Sar-
biewski’s De acuto et arguto (1627)

Kazimierz Sarbiewski, famous in his time as the “Polish Horace,”
is of particular interest since his treatise De Acuto et Arguto, published
in 1627,22 uses a Pythagorean model to sketch a quasi-algorithm for
composing wit. He defines acumen, rhetorical wit, as a junction of
a converging and a diverging meaning that culminate in a paradox-
ical union, or, point. This point is explained with the Pythagorean
formula used earlier by Gaffurio, “discordia concors.” Just like other
Pythagorean thinkers who explain laws of form in the arts and tech-
nology through numerical models, Sarbiewski equates rhetorical com-
position to mathematics and geometry. His rhetorical acumen is juxta-
posed to an “acumen mathematicum,” a triangle, and explained with
a triangular diagram (figure 3). The base represents the material,
left and right arms/sides the elements of dissent and consent respec-
tively, the edge the union, or witty point. So Sarbiewski’s acumen is
indebted to the Pythagorean and Renaissance idea of harmony as a
product made up of opposites striving against each other. His triangle
functions as a computation device for wit. Yet it is not an algorithmic
text generator in a strict sense because it presupposes semantics. Un-
like in proper computations, Sarbiewski’s wit cannot be computed
through a purely formal, syntactical manipulation of symbols.

Another reading of Jesuit acumen rhetoric as computation can
be found in Umberto Eco’s novel The Island of the Day Before.23 Its

22Maciej Kazimierz Sarbiewski. De Acuto et Arguto liber unicus. In Wykladi Po-
etyki, pages 1–20. Wydawnictwo Polskiej Akademii Nauk, Wroclaw, Krakow, 1958.
[87]

23Umberto Eco. The Island of the Day Before. Penguin, Harmondsworth, 1996.
[33]

24 2. COMPUTATIONS OF TOTALITY

ninth chapter, The Aristotelian Telescope, bears the title of Emanuele
Tesauro’s 1654 acumen treatise Il cannocchiale aristotelico.24 Tesauro
himself apppears in the novel as “Padre Emanuele.” His idea of
using—not Pythagorean triangles, but—Aristotelian logic as a formal
device for synthesizing ingenious metaphors is taken up by the novel
and gets transcribed into the fiction of a computing device:

The base consisted of a great chest or case whose front
held eighty-one drawers-nine horizontal rows by nine
vertical, each row in both directions identified by a
carved letter (BCDEFGHIK). On the top of the chest, to
the left stood a lectern on which a great volume was
placed, a manuscript with illuminated initials. To the
right of the lectern were three concentric cylinders of
decreasing length and increasing breadth (the shortest
being the most capacious, designed to contain the two
longer ones); a crank at one side could then, through
inertia, make them turn, one inside the other, at dif-
ferent speeds according to their weight. Each cylinder
had incised at its left margin the same nine letters that
marked the drawers. One turn of the crank was enough
to make the cylinders revolve independently of one an-
other, and when they stopped, one could read triads of
letters aligned at random, such as CBD, KFE, or BGH.25

Eco’s fiction conflates two logical-rhetorical proto-computers with
each other, Tesauro’s acumen rhetoric with the “ars” of medieval Cata-
lan monk Ramon Llull (see p. 36).26 Even if Tesauro’s machine is a
modern fiction, it is true that the Jesuit rhetorical manuals on the acu-
men sought to radically formalize the production of “ingenium,”27 an
ingenuity that would be spelled one century later, as “genius.” The
Renaissance “ingenium” however is not the irregular, anti-methodical
genius of romanticism, but an effect that can be syntheticly created
by anyone. The rise of the romantic genius as the model of an artist

24See Mercedes Blanco. Les rhétoriques de la pointe. Librairie Honoré Cham-
pion, Paris, 1992. [9]

25Eco, ibid., chapter 9
26Anthony Bonner, editor. Doctor Illuminatus: A Ramon Llull Reader. Princeton

University Press, Princeton, New Jersey, 1993. [12]
27Gracián’s book has the according title Agudeza y arte de ingenio. An electronic

version of the 1648 book exists at http://www.cervantesvirtual.com/servlet/
SirveObras/12259950118927841194513/

http://www.cervantesvirtual.com/servlet/SirveObras/12259950118927841194513/
http://www.cervantesvirtual.com/servlet/SirveObras/12259950118927841194513/

PYTHAGOREAN HARMONY AS A COSMOLOGICAL CODE 25

who does not calculate in turn explains the crisis of computational
methods and games in poetry and arts between ca. 1800 and 1900.

Continuity of Pythagorean thinking. The Pythagorean project
consists of the extraction and application of a universal numerical
code that organizes both nature and art. This code allows the cre-
ation of a correspondence between macrocosm and microcosm and
describes harmony, in the sense of beautiful numerical proportions,
as the guiding principle of the world. And for the first time, it allows
the computation of nature and art. Any natural and symbolic sys-
tem can be broken up into numerical proportions and values which
in turn may be compared to the numerical proportions and values
of another observed system. It is this principle of universal similar-
ity and correspondence which Eco calls the “hermetic paradigm” and
sums it up under the maxim “sicut superius sic inferius,” “as above,
so below” to describe a correspondence of macro- and microcosm.28

In Pythagorean and later hermetic thinking, numerical proportions
can be universally equated to geometrical proportions and musical
intervals. Letters, likewise, can be computed as numbers and set into
relation to the numerical intervals which are thought to be the foun-
dations of the cosmos. Pythagorean thought therefore first coined
and systematically expressed the idea that a symbolic-mathematical
source code underlies the universe and describes nature and culture
alike.

The Pythagorean tradition anticipates the modeling of culture
through software, very literally in the case of music. The law that
an octave is a division of a frequency into its half, for example, is
implemented into every sound synthesis computer program in the
world. Computer-generated music and computer-generated digital
instrument programming remains the most systematic elaboration
of the original Pythagorean project of finding numerical and arith-
metic models for sound. The models reach from simple algorithms
like the division of the octave to more recent and complex ones such
as Fourier overtone frequency transformations, originally put down
by the French mathematician Jean Baptiste Joseph Fourier in 1822.
The relative success of mathematical modeling of music explains why
music is the oldest and formally most advanced type of computer-
based art. Algorithmic musical composition software such as MAX

28From his book Streit der Interpretationen which, so far, has only been pub-
lished in German, Umberto Eco. Der Streit der Interpretationen. Universitätsverlag
Konstanz, Konstanz, 1987. [30]

26 2. COMPUTATIONS OF TOTALITY

and Pure Data by Miller Puckette has grown into a number of com-
plete, self-contained programming environments and user interfaces
whose application is no longer restricted to audio processing.29

Twentieth century avant-garde music composition technique
forms a major link between Pythagoras’ discovery of mathematical
laws in music and music composition software like Pure Data. The
dodecaphonic music of Arnold Schönberg was based on the princi-
ple of permuting the order of the twelve halftones of an octave. All
twelve halftones are treated equally, resulting in a composition with
no tonality and no tonal center such as “C major.” The techniques
used to permute twelve tone rows, retrograding and numerical inver-
sion for example, were in fact algorithms. In his late work, Anton
Webern expanded the permutation row principle to all musical pa-
rameters, not only pitch, and laid the ground for the serial music of
Karlheinz Stockhausen and Pierre Boulez in the 1950s and 1960s.30

The latter sought to scientifically define the parameters of sound, or-
ganizing composition according to permutation rows and their com-
plex polyphonic variation. Twentieth century compositional music
thus reapproached the 17th century music of Johann Sebastian Bach.
Bach’s composition techniques particularly in The Goldberg Variations,
The Art of the Fugue and The Musical Offering brought the Renais-
sance Pythagorean concept of music to its highest and most rigorous
formal level—which explains its fascination for present-day computer
programmers and artificial intelligence theorists like Douglas R. Hof-
stadter in Goedel, Escher, Bach.31

When serial composition in the 1950s and 1960s put all sound pa-
rameters under the regime of numerical permutation, musical compo-
sition became thoroughly computational. Yet most its computations
were still calculated by hand. From this, it was only a short route
to analog electronic sound generation, like in Stockhausen’s Studie
II, and computer-aided composition. In 1977, Pierre Boulez founded
and directed the IRCAM electronic music center in Paris where semi-
nal audio software like MAX was developed. For Stockhausen, total
numerical control over sound eventually led to a historical reversion

29See Miller Puckette’s homepage http://www-crca.ucsd.edu/~msp/
software.html

30Stockhausen’s analysis of an orchestra piece by Webern laid the groundwork
for serial composition: Karlheinz Stockhausen. Weberns Konzert für neun Instru-
mente op. 24. In Texte zur elektronischen und instrumentalen Musik, pages 24–31.
M. DuMont Schauberg, Köln, 1963 (1953). [96]

31Douglas R. Hofstadter. Gödel, Escher, Bach. Basic Books, New York, 1979.
[46]

http://www-crca.ucsd.edu/~msp/software.html
http://www-crca.ucsd.edu/~msp/software.html

PYTHAGOREAN HARMONY AS A COSMOLOGICAL CODE 27

of the secularization process that began with Pythagoras’ occult cos-
mology and ended with modern mathematics and computing. In the
course of the 1960s, Stockhausen turned from rationalism to mys-
ticism, arriving at the idea that the cosmos exists through harmonic
waves that permeate all matter and existence. The result is a total mu-
sicality of the universe. At the same time, Stockhausen became sub-
ject to harsh criticism by anti-art activist and philosopher Henry Flynt
who in the 1960s was associated with Fluxus32 and by his own former
student and assistant, the English composer Cornelius Cardew. Inde-
pendently from each other, Flynt and Cardew attacked Stockhausen
as an “imperialist” and suprematist of the Western musical tradition,
and, by implication, its Pythagorean heritage.

The idea that beauty materializes in numerical proportions ac-
cording to mathematical laws continues to be popular in scientific
and engineering cultures, too. Since the early 1970s, Donald Knuth,
widely considered the founder of computer science as an indepen-
dent academic discipline, published his textbooks under the title The
Art of Computer Programming.33 He understands “art” as the formal
beauty and logical elegance of the source code. The software TeX
which he wrote to typeset his books correspondingly implements a
classicist post-Renaissance typography whose notions of beauty are
embedded in Knuth’s algorithms for line spacing and paragraph ad-
justment. At MIT, Knuth initiated a project God and computers whose
results were an exhibition of Bible calligraphies and, in 2001, a book
Things a Computer Scientist Rarely Talks About.34 In this book, Knuth
remembers how as a student he read a computer program code that
he found “absolutely beautiful. Reading it was just like hearing a sym-
phony.”35 This was how he “got into software,” teaching it as an art
rather than a science. The hacker credo put down by Steven Levy
in 1983 that “you can create art and beauty with computers” has its
roots in Knuth’s teaching.36 It ultimately means that a program is not
a transparent tool for creating beauty—like, for example, a graphics
program—, but that it is beautiful by itself. Both schools, highbrow
academic computer science and more underground hacker culture,
perpetuate a Pythagorean, classicist understanding of art as formal

32Most of Flynt’s writings are online under http://www.henryflynt.org
33Donald E. Knuth. The Art of Computer Programming. Addison-Wesley, Read-

ing, Massachusetts, 1973-1998. [55]
34Donald E. Knuth. Things a Computer Scientist Rarely Talks About. CSLI Publi-

cations, Stanford, 2001. [56]
35Donald Knuth, Things a Computer Scientist Rarely Talks About, p. 130
36Steven Levy. Hackers. Project Gutenberg, Champaign, IL, 1986 (1984). [63]

http://www.henryflynt.org

28 2. COMPUTATIONS OF TOTALITY

beauty. This concept blatantly lags behind modern concepts of art.
Since romanticism and 20th century art, aesthetic understandings of
art were not just about beauty, but included the sublime, grotesque
and ugly as well. The same is true, implicitly at least, for the Greek
and Roman antiquity whose highest art form, tragedies, were about
violence and despair.

Fractal geometry and the widespread aesthetic fascination for
Mandelbrot sets are another example of contemporary Pythagorean
aesthetics. They prove that mathematical concepts of beauty do not
necessarily have to be founded on strict order and regular propor-
tions, but can also be built on chaotic iteration (see p. 50). The idea,
after all, is the same; that the cosmos can be mathematically decoded
and art realizes itself as a formal beauty that includes nature and cul-
ture alike. Moreover, the “chaos” in the fractals is relative—and not
an ontological chaos, i.e. it is not unpredictable—as it is, first of all,
framed within a finite surface of a graphical screen, and secondly the
fractal forms generate subjectively repetitive and hence predictable
patterns (see p. 77). The Beauty of Fractals—the title of a book by
Hans Otto Peitgen which popularized Mandelbrot graphics in 1986—
,37 boils down to a static beauty just like that of the Pythagorean fixed
proportions from the octave to the golden section.

The Pythagorean tradition, and with it the contemporary aesthetic
thinking in hard science and engineering cultures, understands cor-
respondences between art and mathematics in terms of numerical
“harmony.” These numbers can be considered a code and formal lan-
guage, but they are, in the classical Pythagorean model, not yet a
source code and language that instigates processes. There is code,
but no execution in the code. Magic, on the other hand, lacks the
concept of a formal language just because it conflates, through its
two modes of similarity and contact, its own language with the ob-
jects and subjects involved in its act. Gysin and Burroughs still follow
this tradition when they fashion computers and tape recorders into
occult ecstatic devices and transform gramophones into “dream ma-
chines.” Language magic thus conceives of execution, but typically
does not have a mathematical understanding of itself.

With their respective corresponding deficiencies, magic and
Pythagorean thinking are two prototypes of programming and soft-
ware, the former lacking a rigorous concept of abstract mathematical
symbol language, the latter lacking a concept of executing symbols.

37Hans Otto Peitgen. The Beauty of Fractals. Springer, Heidelberg, New York,
1986. [73]

KABBALAH 29

The history of software begins, in Western cultures at least, where
magic and Pythagorean thinking coincide.

Kabbalah

In Hebrew, letters and numbers are mapped into the same notation
of the “alefbet.” Unlike Latin where only a small subset of the al-
phabet corresponded to numbers, every Hebrew letter is also a num-
ber. In combination with the idea of divine creation out of the word,
or letter, this amounted in the Middle Ages to a complex system of
Jewish mystical letter computations. The Kabbalah effectively com-
bined the Pythagorean idea of the world being composed of num-
bers so that everything can be described in numerical terms and pro-
portions, with the magical concept of language as an agent that af-
fects matter. The religious sublimation of this concept exists in the
idea that God created the world through language and that even hu-
mans possessed the power of influencing things through the Adamic
language spoken in paradise. Kabbalah may be regarded a specu-
lative science of reconstructing the grammar and vocabulary of the
Adamic and divine language—through among others computational
and pythagorean-numerological readings of the Torah. In its practi-
cal application, magical, respectively theurgic, acts are performed. In
1800, the Jewish German rationalist philosopher and Kant scholar
Solomon Maimon published an autobiography in which he recollects
his juvenile Talmudic and Kabbalah studies in Lithuania.38 He defines
Kabbalah almost linguistically as “the doctrine teaching how to will-
ingly affect nature by means of the manifold names of God which
represent specific modes of working upon, and relations to, natural
objects. These names are regarded not just as arbitrary, but as natural
signs so that everything done with these signs affects the objects they
represent.”

As in magical language, Kabbalist mystics conceive of letters and
words not merely as abstract, artificial denominators which are cultur-
ally defined and shared. They thus stood in opposition to rationalist
definitions of language in Aristotelian philosophy, medieval nominal-
ism and the late 19th century structuralist linguistics of Ferdinand
de Saussure which all insisted upon the constructedness of language.
Since Kabbalah is mystical scholarship aimed at retrieving the orig-
inal power of the divine letters and words, it also aims at applying
this power practically. Modern Kabbalah scholarship, including that

38Solomon Maimon. An Autobiography. University of Illinois Press, Chicago,
2001 (1792). [65]

30 2. COMPUTATIONS OF TOTALITY

of Gershom Scholem, has obscured this end by focusing solely on the-
oretical Kabbalah. Today, practical Kabbalah includes the politics of
the ultraorthodox Shas party in Israel and, on opposite fronts, the
popularized, no more exclusively Jewish New Age Kabbalah of the
Kabbalah Centre whose adepts include Madonna, Liz Taylor, Elton
John, Mick Jagger, Courtney Love and Britney Spears. In its histori-
cal form, practical Kabbalah is theurgy, i.e. magical rituals performed
within religion as invocations of god. Maimon remembers his own
attempts at practical Kabbalah as follows:

With the Kabbalah Ma’asith or practical Kabbalah, I did
not not succeed so well as with the theoretical. The
preacher boasted, not publicly indeed, but to everybody
in private, that he was a master of this also; especially
he professed roeh ve-eno nireh (to see everything, but
not to be seen by others), i.e., to be able to make him-
self invisible. I was particularly eager for this artifice
in order that I, a young person, might practice certain
kinds of mischief on my comrades without being pun-
ished. [. . .] Three days in succession I had to fast,
and every day to say some Ichudim. These are Kab-
balistic phrases of prayer whose occult meaning aims
at inducing sexual unions in the intellectual world in
order to achieve certain effects in the physical world. I
did everything with pleasure, made the conjuration he
had taught me and believed with all confidence that I
was now invisible. Immediately, I hurried to the Beth
Hamidrash, the Jewish academy, went straight up to
one of my comrades and gave him a good slap round his
face. He, however, was no fool and returned the blow
with interest. I was baffled and unable to understand
how he could have recognized me since I had followed
the instructions of the preacher with utmost accuracy
[. . .].39

The earliest known foundation of the Kabbalah is the Sefer Yetzirah
(Book of Creation) whose origin and history is unkown, but which was
in circulation at least since the 9th century. The book, a concise work
consisting of a total of 65 paragraphs, is a proto-Kabbalistic work as
it speaks, for example of the Sefirot, or attributes of God, but has not
developed them yet into the system of the ten Sefirot which is central

39Maimon, ibid.

KABBALAH 31

to the Kabbalah. The creation as told in the book is a creation of the
world through letters. The fourth chapter tells it as follows:

1. There were formed seven double letters, Beth, Gimel,
Daleth, Kaph, Pe, Resh, Tau, each has two voices, either
aspirated or softened.
[. . .]
3. These seven double letters He formed, designed, cre-
ated, and combined into the Stars of the Universe, the
days of the week, the orifices of perception in man; and
from them he made seven heavens, and seven planets,
all from nothingness [. . .].40

In the next paragraph, these letters create things by the virtue of an
algorithm:

4. From two letters, or forms He composed two dwel-
lings; from three, six; from four, twenty-four; from
five, one hundred and twenty; from six, seven hundred
and twenty; from seven, five thousand and forty; and
from thence their numbers increase in a manner beyond
counting; and are incomprehensible.41

What is being described here is precisely the combinatory, mathemat-
ical law of permutation. According to this law, two discrete elements
can be permuted—or shuffled—2! = 2∗1 = 2 times, three discrete el-
ements 3! = 3∗2∗1= 6 and seven elements 7! = 7∗6∗5∗4∗3∗2∗1=
5040times. It is the same mathematical law that is at the heart of do-
decaphonic and serial music composition, anagram poetry and com-
puted word permutation poetry like that of Brion Gysin (whose IN
THE BEGINNING WAS THE WORD permutes six words 720 times ac-
cording to the same principle described in the quotation above). In
the divine creation according to the Sefer Yetzirah, letter combinations
function as a straightforward algorithmic source code. Unlike the ex-
ecutable code of a magical spell with its metaphoric and metonymic
qualities, the execution is strictly formal, a proper computation. The
second chapter of the Sefer Yetzirah even describes a mechanical com-
puting device:

1. The foundations are the twenty-two letters, three
mothers, seven double, and twelve single letters.
[. . .]

40Sepher Yetzirah or The Book of Creation, translated by W.W. Wescott (1887),
http://www.sacred-texts.com/jud/yetzirah.htm

41Sephe Yetzirah, ibid.

http://www.sacred-texts.com/jud/yetzirah.htm

32 2. COMPUTATIONS OF TOTALITY

4. These twenty-two letters, the foundations, He ar-
ranged as on a sphere, with two hundred and thirty-
one modes of entrance. If the sphere be rotated for-
ward, good is implied, if in a retrograde manner evil is
intended.42

The second paragraph describes another combinatory algorithm,
namely that of combinations—calling them “modes of entrance”—of
two elements according to the formula 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+
9+10+11+12+13+14+15+16+17+18+19+20+21= 231. The
“sphere” may therefore be imagined as a device with two mobile, con-
centric circles each of which have the 22 letters inscribed. The device
can be used to compute all possible 231 letter pairs, on the premise
that, unlike in a permutation, a combination like “aleph+bet” is the
same as “bet+aleph.” This assumption still applies in the modern
mathematical definition of a “combination.” The letter “aleph” can
be combined 21 times with the remaining 21 letters of the alphabet,
the next letter “bet” only 20 times since the combination with “aleph”
had already been exhausted, and so on, resulting in the above for-
mula. The creation of the world is, according to this speculation,
computational. Later Kabbalist Torah readings employed algorithmic
methods for reconstructing or, in modern computer programmer ter-
minology, reverse-engineering divine creation through and within the
letter. The Torah was read, among others, as an acrostic (notaricon),
as letter permutation (temurah) or a numerological code (gematria)
for the name JAHWE. The ecstatic Kabbalah, practiced in 13th cen-
tury Spain by Abraham Abulafia and others, become probably the first
comprehensive speculative science and art of language computation.

Superficially, the model of creation through mathematical combi-
natorics in the Sefer Yetzirah appears to converge with Einstein’s belief
that “God does not play dice with the universe.”43 However, it imag-
ines God to have computed it since a die is a simple, one-purpose com-
puter. The difference lies alone in the respective algorithms, the sto-
chastic computation of the die versus the combinatory computation
of the concentric circles in the Sefer Yetzirah. Both models converge,
with order turning into chaos and vice versa, in the imagination of
Thomas Pynchon’s novels. In “Gravity’s Rainbow,” set in the historical
context of Alan Turing’s computer research in World War II England,

42Sepher Yetzirah, ibid.
43Stephen Hawking discusses this claim in depth in his lecture Does God Play

Dice, http://www.hawking.org.uk/lectures/dice.html

http://www.hawking.org.uk/lectures/dice.html

KABBALAH 33

FIGURE 4. Advertising for Kabbalistic software

occult and computational methods are being used alike to predict the
impact points of German missiles. The analysts include “Kabbalists
who study the Rocket as Torah, letter by letter rivets, burner cup and
brass rose, its text is theirs to permute and combine into new reve-
lations, always unfolding.”44 In Pynchon’s The Crying of Lot 49 from
1967, an exploding spray can flies through a bathroom so that only
“something fast enough, God or a digital machine, might have com-
puted in advance the complex web of its travel.”45 In Umberto Eco’s
novel “Foucault’s Pendulum,” a computer named “Abulafia” is used
to calculate Kabbalistic letter permutations of the name YHWE. The
novel contains a BASIC source code of the program, commenting it
with a detailed discussion of the combinatorics in the fourth chapter
of the Sefer Yetzirah.46 Kabbalah computer programs, as tools of the-
oretical Kabbalah, however exist not only in fiction. The commercial
PC software package Torah Codes 2000 (see figure 4), available from
Internet shops like http://www.jewishsoftware.com and Kabbalah

44Thomas Pynchon. Gravity’s Rainbow. Vintage, London, 1995 (1973). [79], p.
717

45Thomas Pynchon. The Crying of Lot 49. Perennial Classics, New York, 1999
(1967). [80]

46Umberto Eco. Foucault’s Pendulum. Ballantine Books, 1990. [31]

http://www.jewishsoftware.com

34 2. COMPUTATIONS OF TOTALITY

Software http://www.kabsoft.com, is being advertised as the “ulti-
mate Bible codes analysis tool.” The program renders the Torah as
a database and features, among others, “Gematria look up of Word,
Phrase, and sentence. Letter Substitution. Letter Analysis. Verse,
Word, and Letter count. Bible statistics Query, and Search.”

FIGURE 5. Diagram of the names of God in Athanasius
Kircher’s Oedipus Aegyptiacus

http://www.kabsoft.com

KABBALAH 35

The idea of divine creation through computations of the letters
of God’s name was adapted by Christian Kabbalists in the Renais-
sance. In 1652-54, Jesuit priest and speculative scientist Athana-
sius Kircher published a book Oedipus Aegypticius that sought to re-
construct “Egyptian wisdom, Phoenician theology, Chaldaic astrology,
Hebraic Kabbalah, Persian magic, Pythagorean mathematics, Greek
theosophy, mythology, Arabic Alchemy, Latin philology.”47 The link
between magic, Pythagorean thinking and Kabbalah is however be-
ing made here less through a historical analysis, but through syn-
cretist combination. The book was founded on the assumption that all
these practices and fields of knowledge contained residues of original
Egyptian sciences and hieroglyphs.48 Before Napoleon’s discovery of
the Rosetta stone, Hieroglyphs had not been deciphered in the mod-
ern age and became subject to occult-scientific speculation. Kircher’s
chapter on the Kabbalah contains a diagram of the ten Sefirot and a
combinatory dial in the shape of a sunflower in which the tetragram-
maton JHWH is permuted into 72 names of God (figure 5). On the
outer concentric circles, these names get equated to four-letter names
of god in contemporary European languages.

Kircher’s model is obviously the Renaissance Italian Neoplatonist
philosopher and first self-acclaimed Christian Kabbalist Giovanni Pico
della Mirandola. Pico was first to make the Kabbalah known to a non-
Jewish audience. He defended his Kabbalah studies against allega-
tions of heresy in his Oration on the Dignity of Man.49 In his writings,
he christianized Jewish mysticism by pointing out trinitarian struc-
tures in the Kabbalah and extending the tetragrammaton with the
Hebrew letter Shin so that it turned into “YHSVH,” Jesus. The same
occurs in Kircher’s sunflower in which Shin is the central letter. Still,
Kircher maintains the idea of creation through the divine letters and
their permutation. After all, this is in accordance to the (Christian)
Gospel of John and its claim that in the beginning there was the word.
The things created and symbolized in Kircher’s diagram are the seven
planets and angels, the twelve signs of the Zodiac and tribes of Is-
rael.50

47According to Joscelyn Godwin. Athanasius Kircher. Edition Weber, Berlin,
1994 (1979). [37], p. 57

48ibid.
49Giovanni Pico della Mirandola. Oration on the Dignity of Man. MacMillan,

1985 (1486). [76]
50According to Godwin [37], p. 63

36 2. COMPUTATIONS OF TOTALITY

Ramon Llull and Lullism

A later work of Kircher, the Ars magna sciendi sive combinatoria from
1669, contains a permutation table very much like that in the Sefer
Yetzirah. It lists the permutations of all integer numbers from 1 to 50
in a purely numerical, formal way. This book, however, is not an ex-
plicitly Kabbalistic work, but a recapitulation and partial modification
of another complex of speculative language computation, the Ars of
14th century Catalan monk Ramon Llull, or Raimundus Lullus.

FIGURE 6. The four algorithms of Llull’s Ars

The Ars is a shorthand for a formal-computational system of com-
posing and deriving philosophical-theological statements Llull laid
out in two books, Ars generalis ultima (1305) and, in shorter ver-
sion, Ars brevis. The roots of the Llull’s ars lie in a mystical reve-
lation in 1265 on mount Randa on the island of Mallorca. During
this event God allegedly revealed his own attributes to Llull. In the
ars, these nine attributes are systematized and indexed with letters
from B-K as follows: B – bonitas (goodness), C – magnitudo (mag-
nitude), D – duratio (duration), E – potestas (power), F – sapientia
(wisdom), G – voluntas (will), H – virtus (virtue), I – veritas (truth)
and K – gloria (glory). Llull’s nine divine attributes bear striking re-
semblance to the ten divine attributes of the Sefirot: 1. Keter, crown,
2. Hokmah, wisdom, 3. Binah, intelligence, 4. Hesed, love, 5. Ge-
vurah, power, 6. Tifaret, compassion, 7. Netzah, endurance, 8. Hod,
majesty, 9. Yesod, foundation, 10. Malkut, kingdom. It has been as-
sumed, among others by Kabbalah scholar Moshe Idel, that Llull took
his inspiration less from God himself than from 13th century Spanish
ecstatic Kabbalah.51 Only one century after Llull, Pico della Miran-
dola describes what he calls the “ars raimundi” as a second form of

51Moshe Idel. Ramon Lull and Ecstatic Kabbalah. Journal of the Warburg and
Courtauld Institutes, 51:170–174, 1988. [49]

RAMON LLULL AND LULLISM 37

Kabbalah. The theological idea behind Llull’s system is that the nine
attributes should be universally valid across all cultures and religions,
so that the Ars, by providing an objective, formal system for creating
statements from these universal truths, could prove the single truth
of Christian religion and be used as a missionary device. Llull, as a
matter of fact, did make several mission travels to Muslim countries
in his lifetime. According to legend, he died a martyr in 1316, having
been stoned to death by Muslims.

FIG. A FIG. T QUESTIONS SUBJECTS VIRTUES VICES

B goodness difference whether? God justice avarice
C greatness concordance what? angel prudence gluttony
D eternity contrarierty of what? heaven fortitude lust
E power beginning why? man temperance pride
F wisdom middle how much? imaginative faith accidie
G will end of what kind? sensitive hope envy
H virtue majority when? vegetative charity ire
I truth equality where? elementative patience lying
K glory minority how? instrumentative pity inconstancy

The nine attributes form the nucleus of a table which juxtaposes
them with nine logical relations (like is equal to, is smaller than, is
greater than), nine questions as they were taught in rhetoric as part
of the inventio, i.e. the gathering of ideas—“how,” “what,” “where
from,” “by what” etc.—, nine cosmological entities from God to an-
gels, heaven, man, etc. down to instruments, in analogy to the Neo-
platonist ordering of the cosmos as a hierarchy of hypostases, or in-
stances, in which each instance is a minor reflection of a higher in-
stance. Finally the Christian virtues and vices form two categories,
and for this purpose are expanded from seven to each nine in order
to fit the system.

The resulting “tabula” is what computer science calls a “flat” data-
base with index fields (B-K). Through the unified number of nine
entries per category, the index can reference any column. It pro-
vides, as a symbolic code, an abstract “alphabetum,” or artificial meta-
language for the entries of the table. The letter “A” is omitted in this
artificial language, expressing the taboo of representing god as the ab-
solute beginning and therefore the first letter in the alphabet. Llull’s
letter B-K may be the first example of what computer science calls the
“semantics” of a programming language. From a linguistic standpoint,
it is odd to call a language semantic, meaningful, which expresses no
meaning in the sense of a judgement or interpretation, or reference
to an idea. Instead, formal languages describe purely technical ma-
nipulations of symbols that require no cognitive interpretation, like
“substitute all occurences of the letter a with the letter b” as opposed
to “substitute the melancholic tone of a text with an optimistic tone.”

38 2. COMPUTATIONS OF TOTALITY

The second operation would require (significantly advanced) artificial
intelligence, and it has not yet been proven that it can be achieved
through a more complex formal manipulation of symbols in a satisfac-
tory way (see p. 106). The “semantics” of a programming language
however have nothing to do with artificial intelligence or cognitive
computing, but simply refer to the style in which the artificial lan-
guage is coded, i.e. which denominators, metaphors and other se-
mantic handles are being used to reference non-semantic operations.
Llull’s “alphabetum” demonstrates that no formal code functions with-
out such a semantics, and culture coded into it. Any such code is thus
a user interface—Llull makes the Latin alphabet the user interface of
his system—and any code, whether assembly language or an iconic
computer desktop, inevitably is an anthropomorphism that involves
translation of processes into human-readable signs.

Llull’s formal alphabet however is not yet a programming lan-
guage. As the index of a tabular, “flat” database, it references only
data, not algorithms. His Ars includes four algorithms for trans-
forming elements of the table into statements, but they are non-
alphabetically represented by four circular graphic diagrams or “figu-
rae” (see figure 6). The first figura links every of nine “principia ab-
soluta,” i.e. god-given attributes, to every other of those principles in
the grammatical form of an attributes. The combination “BC” results
in the statement “goodness is great,” “BD” in “goodness is constant,”
etc. The figure works like an exhaustive cross-reference, or hypertex-
tual linking of all possible combinations, in this case 9∗8 = 72 if one
excludes tautological combinations like BB, “goodness is good.”

The second figure links every logical relation to one of three sub-
ject matters. It therefore has a similar function as the cross-reference
in figure one.

The third figure yields all possible two letter combinations. In
that, it differs from the first figura because it considers, just as in
the modern mathematical understanding of a combination, “BC” the
same as “CB” and results in 8+7+6+5+4+3+2+1= 36 letter pairs.
This is exactly the same combinatory algorithm as the one used earlier
in the Sefer Yetzirah to determine 231 names of god from pairing 22
letters.

The fourth figure is used to combine three letter combinations
instead of just pairs. Again, there is a resemblance to the Sefer Yet-
zirah and the device with concentric, rotating circles described in its
second chapter. Llull writes that “in hac quarte figura, et ultima com-
prehenditur Ars tota,” that his whole Ars is contained in this fourth

RAMON LLULL AND LULLISM 39

figure. Yet it can’t be used without restraints. Redundant combina-
tions like “BBB” are, again, excluded. Through a complicated, and
mathematically incoherent procedure which would take up to much
space to explain here, Llull arrives at 28∗9 = 252 three letter combi-
nations which may be generated with the fourth figure. Unlike the
Sefer Yetzirah, Llull’s ars does not conceive of letter permutations, but
of combinations only, and only renders combinations of two elements
mathematically correct.

Aside from these formal limitations, there are implicit semantic
limitations and self-restraints in Llull’s Ars. For example, a reading of
combination BDC as “Deus—contrarietas—magnitudo,” God is con-
trary to magnitude, would be invalid, respectively illegal. A whole set
of heretical applications of the “ars” needs to be suppressed: which
Llull’s writing, however, does not mention. The system only allows
building statements which are “true” a priori and then, applying its
transformation methods, derive different true statements from them
through formal-algorithmic means. This make Llull’s ars a first proto-
type of modern symbolic logic in which logical statements are trans-
formed according to purely formal rules. This resemblance is not
coincidental. Leibniz, the inventor of symbolic logic, took his inspira-
tion from Llull’s Ars when he wrote his first book, Dissertatio de arte
combinatoria in 1666, 12 years after Kircher’s Ars magna sciendi.

After Giordano Bruno’s theosophical Lullism in the 16th century,
Llull’s Ars was resurrected in the early 17th century through the en-
cyclopedist Johann Heinrich Alsted. Kircher’s Ars magna sciendi later
marked the end point of 17th century scientific Lullism. Via Alsted,
Lullist combinatorics changed its character in the 17th century from a
theological device to a generative classificatory system of knowledge.
Before Diderot and d’Alembert and their revolutionary reinvention
of the encyclopedia in the late 18th century, knowledge in encyclope-
dias was not structured arbitrarily by the alphabet, but in a systematic
order of things according to their place in a cosmology. Lullist combi-
natorics allowed the generation of complex hierarchical systems for
knowledge classification through the exhaustive combination of cate-
gories. While Llull’s use of algorithms was synthetic and meant to cre-
ate complexity, a wealth of statements and reflections from only nine
“absolute principles,” the encyclopedist appropriation of his method
should on the contrary handle and reduce complexity, structuring a
given, unordered, large body of knowledge. It was probably the first
historical example of outsourcing organization to algorithms, not un-
like computer algorithms that manage payments and bank accounts
today.

40 2. COMPUTATIONS OF TOTALITY

FIGURE 7. Comenius’ Orbis pictus: A graphical inter-
face for alphanumeric code

Still in the 17th century, the theologist, hermetic philosopher and
educational reformer Jan Amos Comenius developed Lullist computa-
tional encyclopedism into a knowledge system with a graphical user
interface (figure 7). A pupil of Alsted, Comenius wrote an immensely
popular encyclopedist work with his schoolbook Orbis pictus.52 The
Orbis pictus, the world in pictures was the first illustrated children’s
book in history. Each double page shows one aspect of the world—the
planets in the beginning, then one area of human civilization like, for
example, agriculture—, marking up every illustration with numbered
footnotes that explained the objects both in Latin and the pupil’s na-
tive language. With the book, pupils would learn both the order of
the world and their native and a foreign language. Comenius’ idea,
inspired by the utopian thinkers Campanella and Johann Valentin An-
dreae (see p. 51 and 52), was to use pictorial language as firstly a
universal language and secondly as an aestheticly concrete means to
represent an abstract order of knowledge. Just like the graphical user

52Jan Amos Komenský. Orbis sensualium pictus. In Opera Omnia, volume 17,
pages 69–271. Academia Praha, Praha, 1970. [57]

RHETORIC AND POETICS 41

interface of the early Macintosh competed with the alphabetic com-
mand line interface of DOS and Unix, the pictures in Comenius’ book
compete with Llull’s nine letter alphabet as the interface, or “seman-
tics,” of a formal system.

Although there were radical conflations of Lullism and Christian-
kabbalistic mysticism later in the 17th century (see p. 46), Llull and
the 17th century scientific Lullists do not, unlike the Jewish kabbalists,
conceive of letter combinatorics as the source of creation. Instead,
they treat it as method of logical reasoning, generation and classifi-
cation of statements and knowledge. God is implicit, not explicit in
their combinatorial systems. The systems do not serve a kabbalistic
reconstruction or reverse-engineering of a divine language. The di-
vine is present as an inscription and representation of divine order
within the categories, but God does not materialize in the computa-
tions. Performing them is not a theurgic act, as opposed to Kabbal-
ism and, for example, Rabbi Loew’s creation of the golem through
practical Kabbalistic application of the Sefer Yetzirah.53 The secular-
ization of the Jewish Kabbalah through Llull and Christian Kabbalism
continues with 17th century Lullist science, analytic philosophy since
Leibniz, up to the 20th century concept of machine computation and
computer software. It leaves, on the other hand, the question as to
what extent religion, metaphysics and speculative thinking might still
be present in contemporary computer culture.

Rhetoric and poetics

Classical rhetoric. Next to magical, Pythagorean, and Kabbalist
thinking, an independent tradition of poetic language computations
exists in classical rhetoric and poetics. A 1874 monograph of Ger-
man poet and oriental scholar Friedrich Rückert, Grammatik, Poetik
und Rhetorik der Perser (Grammar, Poetics and Rhetoric of the Per-
sians) suggests, with its examples of word permutations and rotary
dial word combinatorics in ancient Persian rhetoric and poetry, that
rhetorical language computation might have non-Western sources.54

Other prominent examples of computational writing are the Chinese
I Ching oracle (see p. 77) and Tibetan prayer wheels. In fact, no
historical Western computational text has been transcribed as early

53The legend of Rabbi Loew has been told many times in books and films, see
http://www.pantheon.org/articles/r/rabbi_loeb.html

54Friedrich Rückert. Grammatik, Poetik und Rhetorik der Perser. Verlags-
buchhandlung Otto Zelle, Antiquariat Otto Harrassowitz, Wiesbaden, Osnabrück
(Gotha), 1966 (1874). [86]

http://www.pantheon.org/articles/r/rabbi_loeb.html

42 2. COMPUTATIONS OF TOTALITY

and frequently into electronic computer software as the I Ching (see
p. 77). Classical Greek and Roman rhetoric advocated the virtue of
“copia,” multitude of expressions and wealth of variation in speech.
Part of this virtue was the ability to create an abundance of speech
from a limited amount of ideas and material. The part of rhetoric
that taught brainstorming for an oration, the “inventio,” was con-
cerned with this problem. Word permutation became one of gener-
ative means of brainstorming and text composition, for example in a
poem of the Greek poet Athenaios of the second century B.C.. It had
its closest parallel in an elaborated form of chiasm—i.e. the crossing
of two similar phrases—called “commutatio” or “permutatio,” like,
for example “ego tu sum, tu es ego” (“I am you, and you are me”)
in line 721 of Plautus’ Stichus, a comedy that made fun of Plato’s
Symposium.

FIGURE 8. Sun’s Looking Glass computer desktop:
spatial-pictoral representation of items very similar to
the ars memoria

In classical rhetoric, “inventio,” the creation of topics, dialectically
corresponded to “memoria,” the mental recollection of those topics in
the act of speech. Memoria taught the memorization of a speech in
an age where paper notes were unaffordable. The mnemotechnics
of classical rhetoric is described in the Latin Rhetorica ad Herennium

RHETORIC AND POETICS 43

which attributes its origins to the Greek poet Simonides.55 It is a
very particular, today obscure, system of visual-metaphoric memo-
rization based on the imagination of architectural spaces, typically
houses with separate rooms. These rooms are mentally filled with
objects that represent concrete and abstract topics of the speech, by
the virtue of metaphor, onomatopoetic resemblance or other figures
of speech. While memoria involves no algorithmic computations in
itself, it could be regarded as the first implementation of a visual user
interface for alphanumeric codes, and certainly influenced Comenius’
Orbis pictus, too. The “memory palaces” and “memory theaters” de-
veloped later in the Renaissance bear a striking resemblance to GUI
(graphical user interface) desktops and their representation of files
through icons arranged in a space. Rhetorical memoria even antic-
ipates three-dimensional user interfaces (like 3dwm or Sun’s Project
Looking Glass) in practically every aspect of the design.

Visual mnemotechnics became obsolete as paper became an af-
fordable and more capable medium for scrap notes, a development
that might have also have implications for software user interfaces.
The question remains whether extending the visual illusionism and
immersion of computer user interfaces to 3D simulation will really
yield systems superior to software interfaces based on the notation
and grammar of written language. If one compares graphical com-
puter interfaces in their first mass market incarnation, the Apple Mac-
intosh desktop of 1984, to contemporary graphical user interfaces
on MacOS, Windows and the X11 Window System, it is obvious that
much of the original iconic representations—the desk, the waste pa-
per basket, the file cabinet—became obsolete and that the visual
metaphors took up a life of their own. As opposed to a Macintosh
of 1984, it is hardly possible to introduce a novice computer user
to a contemporary graphical user interface by pointing out its resem-
blance to an analog desktop. With MacOS X, the original mass market
graphical operating system in fact reverted to also providing a Unix
command line shell.

Rhetoric as such can be seen as a discipline concerned with the
formalization and quasi-formal manipulation of language. It is not
genuinely formal because its tropes, such as metaphors, are semantic
and not just the purely syntactical operations that would be neces-
sary in a computation. Still, the concept underlying rhetoric is that
any speech and writing can be created through formal instruction,

55Frances Yates. The Art of Memory. Routledge & Kegan Paul, London, 1965.
[101]

44 2. COMPUTATIONS OF TOTALITY

and—unlike in concepts of divine inspiration or artistic genius (see p.
106)—composition is a technique that can be learned by anyone. The
more formal rhetorical instruction became, the more it approached
language computation. In the step from chiasm to word permutation,
poetic formalism finally went from semantic to formal-mathematical
manipulation of symbols. Such texts have input data (the words to be
transformed), an algorithm (permutation, often explained separately,
just as in an algorithmic source code) and an execution, for example
in writing down the multiple output of a permutation.

Proteic poetry. In the fourth century A.D. permutational poem
Carmen XXV written by the Latin poet Optatianus Porfyrius, twenty
stanzas are generated from a single stanza of source material.56 These
source words can be permuted within and between single lines. Ac-
cording to the mathematical law of permutation, more than 1.6 bil-
lion permutations of the stanza exist. The poem ironically relates the
semantics of the words to the syntax of their computation since it tells
about permutations and confusion in the songs of the muses. Another
early known example of word permutational verse is a poem of the
medieval Irish monk Dicuil.57

In 1561, humanist scholar Julius Caesar Scaliger for the first time
described word permutational poetry as a regular poetic form. In his
Poetices, a poetics that become canonical for 16th and 17th century
poetry, the form is called “Proteus” after the god who perpetually
changes his face.58 It includes a proteic poem “Perfide sperasti di-
vos te fallere Proteu” (“Perfidiously, you, Proteus, hoped to fool the
Gods”) whose words can be permuted at will as long as the hexamet-
ric meter is kept. As a humanist, Scaliger conceived of his Poetices as
a continuation of the Greek and Latin rhetorical and poetic tradition.
Most probably, his “Proteus” verse had Optatianus Porfyrius’ Carmen
XXV as its model. Through Scaliger’s canonization and sanctioning of
the form in the Renaissance, a boom of word permutational poetry
resulted, especially in the early 17th century. The form was popular
particularly among Christian ecclesiastical poets writing in Latin. In

56Publilius Optatianus Porfyrius. Publilii Optatiani Porfyrii Carmina. Paravia,
Turin, 1973. [77]

57Anagrams likewise are permutations of letters; however, since anagram po-
ems never or rarely ever permit all possible letter permutations, there formal-
mathematical permutations typically do not correspond to the semanticly permitted
permutations.

58Julius Caesar Scaliger. Poetices libri septem. Frommann, Stuttgart, 1964
(1561). [89]

RHETORIC AND POETICS 45

the period of the Thirty Years War, with its destruction of large parts
of Middle Europe, proteic peace prayers were written whose permuta-
tions often span, like a hardcopy of computer program output, several
dozens or hundreds of book pages. In them, language computation
had become theurgy again, the activation of divine powers in the ce-
lestial macrocosm to change matters in the earthly microcosm.

Since the permutation of Scaliger’s verse “Perfide sperasti divos te
fallere Proteu” was restrained through the hexameter, not mapping
its mathematical permutation, the proteic verse form became modi-
fied later in the 17th century in attempts to combine it with Lullist
combinatorics. Thomas Lansius, a professor of rhetoric and politics,
wrote a proteic poem whose two lines consisted only of monosyllabic
words. They could be shuffled without metrical constraints. In fact,
his poem merged the “Proteus” with a monosyllabic double verse
Scaliger calls “Correlativi” (and which are known as “versus rappor-
tati” otherwise).59 Through the permutation of monosyllabic words,
the poetic combinatorics of the verse for the first time was identical
to its mathematical combinatorics, and the rhetorical and poetic tradi-
tion of Athenaios, Optatianus and Scaliger for the first time converged
with Lullism.

Johann Heinrich Alsted consequently reprints Lansius’ poem
along with a computation table of its permutations in his Lullist en-
cyclopedia.60 Leibniz’ Dissertatio de arte combinatoria is, through
its many examples and citations, one of the richest sources of 17th
century proteic poetry.61 Between Alsted and Leibniz, the mid-17th
century German poet, language researcher and Lullist Georg Philipp
Harsdörffer sought to systematically exhaust the potential of combi-
natorics in linguistics and poetics. Not only did he write two Proteic
monosyllabic poems after Lansius’ model—and with a footnote that
credits Lansius—, but he also designed a combinatory morphologic
word creation machine after the model of Llull’s third “figura.” The
Fünffacher Denckring der teutschen Sprache (Five-fold Thought Ring of
the German Language) (figure 9) should permit anyone to generate

59Scaliger, ibid.
60Johann Heinrich Alsted. Encyclopaedia. Holzboog, Stuttgart (Herborn), 1989

(1630). [4]
61G.W. Leibniz. Dissertatio de arte combinatoria. In Sämtliche Schriften, vol-

ume 1 of VI, pages 165–230. Akademie-Verlag, Berlin, 1989. [62]

46 2. COMPUTATIONS OF TOTALITY

FIGURE 9. Georg Philipp Harsdörffer’s Denckring, a
word generator

all existing and potential words of the German language by the com-
bination of what Harsdörffer calls syllables, but which in modern lin-
guistic terminology are morphemes. At this point, computation is
no longer a rhetorical, magical or theurgic means of manipulating
language. Instead, language in itself is thought to be computational
and algorithmic, a program. While Llull, in his anticipation of sym-
bolic logic, separates what is later called “artificial” from “natural” lan-
guage with his index letter B-K versus the word entries of the “tabula,”
Harsdörffer thinks of everyday natural language as being identical to
artificial combinatory language. All language thus is programming
language. This idea also sets Harsdörffer apart from the Kabbalists
who assigned computational power to divine and theurgic language
only—the code of creation—, not to everyday language.

An ultimate hypertrophy of everyday language into program code
is reached with the sonnet XIV. Libes-kuss: Vom Wechsel menschlicher
Sachen (14th Kiss of Love: On the Permutation of Human Matters) writ-
ten in 1671 by the German poet, and later heretical “prophet” and

COMBINATORY POETRY AND THE OCCULT 47

“monarch” Quirinus Kuhlmann.62 Adapted straightforwardly from
Harsdörffer’s second proteic poem, reusing most of its words and
word poems just like an open source program reuses earlier source
code, it also mixes language material from Solomon’s proverbs and,
very likely, the preamble of Johann Valentin Andreae’s Rosicrucian
Fama of 1614 (see p. 51). The result is a monumental proteic sonnet
whose permutations even the author can no longer calculate. The af-
terword stops at spelling out the permutation of 50, a number copied
straightforwardly from the permutation table in Athanasius Kircher’s
Ars magna sciendi sive combinatoria. (Kuhlmann uses Kircher’s mod-
ified Lullist letter code in other poems of the same volume.) The
sonnet however is composed not of 50, but of 12∗ 13 = 169 words,
amounting to a total of 13!12= 3.399∗10117 permutations. It functions
as a world machine, permuting, both in the meaning of its words and
in its combinatory mechanics, an inventory of the micro- and macro-
cosm. Its own couplet, and its afterword, claims that to grasp the
principle of the permutation of things means to have wisdom of the
world. This alludes to the both to the use of Solomon’s proverbs in
the poem and adaptions of Solomon’s Song Celestial in the volume
in which it appeared. Through this intertextuality, the poem renders
itself a Solomonic machine. It is a computational reverse engineering
of Solomon’s wisdom, considering the proverbs as they are written in
the Bible the fragmentary output of an occult machine.

Beyond being the principle of wisdom, permutation also is the
principle of micro- and macrocosm itself: “everything permutes, ev-
erything loves, everthing seems to hate something,” as the first line
of the couplet puts it. Not only does the poem enrich rhetoric and po-
etics with encyclopedic Lullism. It also practices Christian Kabbalah
through its concept of creation as the permutation of words, in a sim-
ilar manner as in the Sefer Yetzirah.

Combinatory poetry and the occult

Written in 1671, Kuhlmann’s poem concludes 16th and 17th century
word permutation poetry, manifesting the climax and temporary end
point of the form. By its hypertrophy of word permutations into a cos-
mology, it contradicts the secularist tendency of 17th century Lullism
of reassessing an originally theological device as a rational method
of knowledge classification or, as in Harsdörffer, linguistic analysis

62Quirinus Kuhlmann. Himmlische Libes-küsse. Niemeyer, Tübingen, 1971
(1671). [60]

48 2. COMPUTATIONS OF TOTALITY

and synthesis. Leibniz who on the grounds of rational science trans-
forms Lullism into symbolic logic and an early mechanical calculation
device, stands for an opposite to Kuhlmann’s Kabbalist cosmology.

In a less baroque and more minimal-modernist fashion, Brion
Gysin’s permutation poem IN THE BEGINNING WAS THE WORD man-
ifests an epistemology with striking parallels to Kuhlmann’s, regard-
less of its employment of a Honeywell digital computer as the end
product of rationalist computation. Gysin conflates divine speech,
creation through speech and language permutation as an ecstatic
practice just like Abulafia and Kuhlmann did before him. While the
poetic algorithm is the same and its metaphysical connotations are
similar, the implications differ. The theosophic and gnostic tradition
in Gysin’s work is a “dark,” satanic one. It could not be thought
of without Aleister Crowley’s satanic travesty of theosophy and Kab-
balah (such as in The Book of Lies).63 As in the work of William S.
Burroughs, ecstasy is linked to psychedelic drugs and revelation of a
Freudian unconscious rather than religious epiphany.

While Kuhlmann remained within the boundaries of Christian
faith, he too ended up as a heretic. Two years after the sonnet
was published, he embarked on an occultist-chialistic career. His
book Neubegeisterter Böhme (Newly Inspired Böhme, a work osten-
sibly on the German mystic Jakob Böhme) re-employed the Lullist
combinatory method for generating one thousand “theosophical ques-
tions.” From there on, Kuhlmann considers himself a prophet, travels
through Europe to forge an alliance of Muslims, Lutherans, Orthodox
and Calvinists against the pope, fails to convert the sultan in Con-
stantinople, and ends up being burned as a heretic in Moscow.—In
striking similarity, Abraham Abulafia tried to bring down the pope
with his ecstatic Kabbalah four centuries before.64—On his itinerary,
Kuhlmann writes a monumental book Kühlpsalter (Cool Psalm), his
testament and spiritual poetic diary that in parts continues to employ
combinatorial-permutational methods of text generation and word-
play.

Both Abulafia’s and Kuhlmann’s biographies exemplify how com-
putational execution of language transgresses the formal and intellec-
tual realm, turning into a radical practice. It appears that the seman-
tics of executable code does not only reside in its culturally chosen,
arbitrary denominators (like Llull’s letters B-K), but also in the very

63Aleister Crowley. The Book of Lies. Red Wheel Weiser, 1970 (1913). [26]
64Moshe Idel. The Mystical Experience in Abraham Abulafia. State University of

New York Press, Albany, 1988. [48]

COMBINATORY POETRY AND THE OCCULT 49

act of execution. Once formal execution is considered a cosmological
principle, it becomes synonymous with performative execution. The
same formal-performative extremism can be found in the more rigor-
ous early 1960s Fluxus action scores like La Monte Young’s instruction
to “Draw a straight line and follow it.”65 It implies a philosophical de-
fiance of space and time constraints, and reverses subject and object
in that the artifice, the line, becomes the subject and the performer its
follower, respectively object. In Burroughs’ The Electronic Revolution,
technology turns into an autonomous subject, too: language becomes
a biological virus, tape recorders take upon the identity of Adam and
Eve, typewriters turn into speaking bugs like in David Cronenberg’s
filmic adaption of Naked Lunch. The consequences are similar to those
of Abulafia and Kuhlmann in that a poetics of executing code trans-
gresses into performance and politics:

Here is a sample operation carried out against The
Moka Bar at 29 Frith Street London W1 beginning on
August 3, 1972 . . . Reverse Thursday . . . Reason for op-
eration was outrageous and unprovoked discourtesy
and poisoned cheese cake. . .
Now to close in on The Moka Bar. Record. Take pic-
tures. Stand around outside. Let them see me. They are
seething around in there. The horrible old proprietor,
his frizzy haired wife and slack jawed son, the snarling
counter man. I have them and they know it.
“You boys have a rep for making trouble. Well come on
out and make some. Pull a camera breaking act and I’ll
call a Bobby. I gotta right to do what I like in the public
street.”
If it came to that I would explain to the policeman that I
was taking street recordings and making a documentary
of Soho. This was after all London’s First Expresso Bar
was it not? I was doing them a favor. They couldn’t say
what both of us knew without being ridiculous. . .
“He’s not making any documentary. He’s trying to blow
up the coffee machine, start a fire in the kitchen, start
fights in here, get us a citation from the Board of
Health.”

65La Monte Young. Composition 1960 #10 to Bob Morris. In Harald Szeemann
and Hans Sohm, editors, happening & fluxus. Kölnischer Kunstverein, Köln, 1970
(1960). [102]

50 2. COMPUTATIONS OF TOTALITY

Yes I had them and they knew it. I looked in at the old
Prop and smiled as if he would like what I was doing.
Playback would come later with more pictures. I took
my time and strolled over to the Brewer Street Market
where I recorded a three card Monte Game. Now you
see it now you don’t.
Playback was carried out a number of times with more
pictures. Their business fell off. They kept shorter
and shorter hours. October 30, 1972 The Moka Bar
closed. The location was taken over by The Queens
Snack Bar.66

An extension of the logic of algorithmic code into political action ex-
ists, more prominently, in the Free Software movement founded by
Richard Stallman with the GNU Manifesto in 1983.67 The popular,
anonymous hacker credo that “information wants to be free” sup-
poses a political semantics embedded into formal, digital code, by its
technical virtue of boundless and lossless replication. This replication
already happens when program code gets executed, i.e. copied from a
storage device into the CPU. The Free Software movement translates
the logic of executable code into a number of other executable codes:
the GNU manifesto as a political instruction code, the GNU licenses
as a legal code, free software documentation as a technical instruc-
tion code. Even religious activation is involved, although ironically,
in dubbing software experts and prominent hackers “gurus,” activists
as “evangelists” and, finally, supreme guru and evangelist Stallman
himself as Saint Ignutius of the Church of Emacs.68

Unlike Kabbalism and its permutations, the computational poetic
trope of the GNU project is recursion, the potentially infinite loop-
ing iteration of a statement (on which Douglas R. Hofstadter’s book
Goedel Escher Bach is one long meditation). “GNU” itself stands for
“GNU is Not Unix.” It is, in other words, an acronym that contains
itself, recursively expanding into “GNU is not Unix is not Unix,” ad
infinitum. Recursion is a technical principle also of the Lisp program-
ming language in which much of the Emacs is written. It is further-
more the core logic of the GNU General Public License (GPL) which

66William S. Burroughs. Electronic Revolution. Expanded Media Edition, Bonn,
1982. [19]

67Richard Stallman, The GNU manifesto, http://www.gnu.org/gnu/
manifesto.html

68Emacs is the universal text editor and integrated development environment
of the GNU project.

http://www.gnu.org/gnu/manifesto.html
http://www.gnu.org/gnu/manifesto.html

COMBINATORY POETRY AND THE OCCULT 51

commands that a derivative work of a GNU-licensed code—be it a
modification or extension—must in turn be released under the terms
of the GPL. Microsoft therefore calls the GPL a “virus” and refers to
code licensed under its terms as a contagion.69 Indeed, the larger the
public body of GPLed program code is, the higher the incentive of
programmers to use it for new projects. Since this requires the subse-
quent release of those projects under the GPL, the body of available
GPLed code increases in turn and attracts even more developers to
take from and contribute to it. “Freedom” is the metaphysical center
of the movement. The GNU manifesto defines it only in its practical
meaning for software and software usage, but not theoretically, in
philosophical or political terms. It appears to be a freedom founded
on the structure of executable code and digital information—an on-
tology derived from technical function. The place of a theory of free-
dom is taken by the figure of recursion. It becomes the poetic, philo-
sophical and economic trope in which freedom both materializes and
through which it can be grasped, described as in a source code and
therefore, paradoxically, controlled.

Information as a code that executes into political action and into
utopia existed before the Free Software movement. It was central
to the 17th century educational utopias of Comenius, his collabora-
tor and “Royal Society” founder Samuel Hartlib and their intellec-
tual mentor and correspondent, German Protestant theologist and
co-author of the original 1614 Rosicrucian manifesto Fama Fraterni-
tatis, Johann Valentin Andreae.70 Andreae’s 1619 pamphlet Turris Ba-
bel (The Tower of Babel) documents his passage from the Rosicrucian
“ludibrium,” “playful fancy” as he called it later in his autobiography,
to a more concrete educational reform politics.71 The text is a dialogi-
cal satire on the Rosicrucian craze Andreae himself had instigated and
which, in the first five years only, had yielded more than 150 public
replies from authors who sought to get in touch with the unknown
hermetic brotherhood.

69Microsoft states on its page http://www.microsoft.com/resources/
sharedsource/Articles/LicensingOverview.mspx that the copyleft rule “is what
makes the GPL ‘viral,’ because it causes GPL terms to apply to software that incor-
porates or is derived from code distributed under the GPL, regardless of whether
the program’s developer intended that result or even knew of the presence of GPL
code in the program.”

70Johann Valentin Andreae. Fama Fraternitatis, Confessio Fraternitatis, Chymis-
che Hochzeit: Christiani Rosencreutz Anno 1459. Calwer Verlag, Stuttgart, 1994
(1973). [6]

71Johann Valentin Andreae. Turris Babel. Zetzner, Strasbourg, 1619. [5]

http://www.microsoft.com/resources/sharedsource/Articles/LicensingOverview.mspx
http://www.microsoft.com/resources/sharedsource/Articles/LicensingOverview.mspx

52 2. COMPUTATIONS OF TOTALITY

With Turris Babel, Andreae joins that debate under his own name
and mocks the Rosicrucian hype. However, instead of busting it and
outing himself as the plotter, he brings up seventy-five allegorical pro-
tagonists who each pronounce their own opinion about the Rosicru-
cians. In chapter 16, three characters enter the scene, the “reforma-
tor,” the “deformator” and the “informator.” While the deformator
wants to do away with all traditional ties and institutions including
church and state, the reformator hopes for their restoration. The in-
formator finally supersedes their debate by demanding to “inform”
mankind so that “the divine law will be saved from the deformator’s
corruption and the reformator’s eagerness and become the constitu-
tion of this world.”

“Information” refers to its literal Latin sense of “impregnation,”
“shaping,” or “instruction.” The informator is an agent of a new
Christiana Societas (Christian Society) which the final chapter of the
book and Andreae’s later writings propagate and describe. With the
Rosicrucians being superseded by the Christian Society, fama is su-
perseded by information, respectively education. In the ideal state
of this information society, Andreae’s utopian Christian-communist
republic Christianopolis, all knowledge is denoted in public mural
paintings. It is precisely the concept of the graphical user interface—
borrowed from Tommaso Campanella’s 16th century utopian text City
of the Sun—which Comenius implements in the Orbis pictus. Defined
against de-formation, re-formation and fama, Andreae’s information
is not only loaded with pedagogics and theology, its definition also
is radically performative. Information is only what has an impact,
reaching and impregnating its recipients just like the execution of a
program code mobilizes matter. In Andreae’s Christiana Societas, the
origin of the impregnation is “heaven,” the informant is called “God.”
Almost four hundred years later, this analysis of “information” seems
to be politically and philosophically more precise and rigorous than
concepts like “information society” and “information wants to be free”
which, passing off “information” as a culturally autonomous, ahistor-
ical and self-perpetuating agent, in fact write a crypto-theology of
information.

Setting information free through code and activism, and bringing
down the Moka bar, both the Free Software movement and Burroughs’
The Electronic Revolution turn their theoretical Kabbalah into practical
Kabbalah solely through their technical understanding of information,
language, code. Executable code not only mobilizes matter, but also
people. In Abulafia’s and Kuhlmann’s Kabbalism, the code and its ex-
ecution takes up a life of its own. Both think of them not merely as

COMPUTATION AS A FIGURE OF THOUGHT 53

a reflection, but as a materialization of the divine, and develop this
thought from theory into ecstatic and political-theological practice.
The step from writing to action is no longer metaphorical, as it would
be with a semantic text such as a political speech or a manifesto. It
is concrete and physical because the very code is thought to materi-
ally contain its own activation; as permutations, recursions or viral
infections. It is not only words made flesh, but words being flesh.

Computation as a figure of thought

Lullist imagination. Explicit and hidden theological politics
seem to run through the various poetics and cultural practices of for-
mally executable code, yet contradictory tendencies exist as well:

(1) Totalism vs. Fragmentation
(a) Totalism / Synthesis

The employment of algorithmics, permutation, combi-
nation and recursion to exhaust all existing aspects of
a matter: The exhaustion of topics in rhetoric, the ex-
haustion of theological truth in Llull’s ars, the exhaus-
tion of knowledge in Lullist encyclopedism, the exhaus-
tion of wisdom in Kuhlmann’s poem through reverse-
engineering Solomon.
Algorithmics functions as expansion of a small source
code into a near-infinitude of material.
This tendency culminates in Quirinus Kuhlmann’s theo-
retical sketch of an Ars magna librum scribendi, a uni-
versal letter combination machine designed to write all
existing and potential books in the world (see p. 61).

(b) Fragmentation / Analysis
Generative classification of knowledge in turn compart-
mentalizes it into specialist domains. Program execu-
tion can be seen as the handling of complexity, the pos-
siblity of reducing, for example, one hundred pages of
proteic verse permutations to one line of material and
one paragraph of instruction; or the reduction of sev-
eral thousands statements created by Llull to three al-
gorithms and one table of terms.
In other words, combinatory knowledge classification
embodies the dialectic that not only an abundance of
information can be generated from a minimal source
code, but that vice versa an abundance of information
can be analytically reduced to one algorithm.

54 2. COMPUTATIONS OF TOTALITY

(2) Rationalization vs. Occultism
(a) Rationalism

The indexing and classification of knowledge, the de-
velopment of artificial formal languages as “user inter-
faces” for data and algorithms, computation as such.

(b) Occultism
Theurgy, totalism expanding into demiurgic creation,
code execution translating into practical political theol-
ogy.
Kuhlmann’s example shows that theurgy and demiurgy
are not necessarily precursors of a scientific rational-
ization, but that scientific rationalization (like that of
17th century encyclopedic Lullism) itself can be used
as a philosophical ground for occult theology, precisely
as an attempt to exceed scientific Lullism in a physical
and metapysical, microcosmic and macrocosmic grasp
of totality. This further proves that the cultural history
of executable code cannot simply be written as a linear
Hegelian progress from magical to scientific practices.

(3) Hardware vs. Software
(a) Hardware

There is a tendency of building computational hard-
ware for algorithms: the device described in the Se-
fer Yetzirah, Llull’s and Giordano Bruno’s combination
wheels, Harsdörffer’s Denckring. Kuhlmann, too, de-
signs a Wechselrad (permutation wheel) to speed up the
permutation of his sonnet.

(b) Software
The rhetorical tradition of mental computation and
memorization, in the “inventio” and “memoria.”
Abstraction from mechanical devices through symbolic
handles and denominators, for example in the replace-
ment of Llull’s mechanical “figurae” through abstract
symbolic denominators in later symbolic logic and com-
puter programming languages.

(4) Syntax vs. Semantics
(a) Syntax

Program code as purely formal and therefore syntactical
abstraction from human language.

(b) Semantics

COMPUTATION AS A FIGURE OF THOUGHT 55

The inscription of metaphors and semantic handles,
from Llull’s letters B-K up to statements like “for,”
“while,” “if” in programming languages.

(5) Artificial vs. Natural Language
(a) Artificial Language

The idea that language can be computed only through a
purely formal, syntactical metalanguage that exists sep-
arately from natural language.

(b) Natural Language
The idea that common human language itself is a prod-
uct of computation, and can be described with algo-
rithms, such as in Harsdörffer’s Denckring, Kuhlmann’s
poetry or artificial intelligence research.

CHAPTER 3

Computation as Fragmentation

Pre-modern concepts of computation typically relied on an equiva-
lence of macrocosm and microcosm and so conceived of algorithms
as demiurgic creation, metaphysically. The game by contast is a
central model of 20th century computation, both in the arts and in
technology. The main ontological difference between theosophic and
game computing is that games can do without a reference to higher
powers—which is why religions declared many games, dice and card
games for example, sinful—and may impose arbitrary restrictions
that do not logically follow from a higher natural order. A game,
in other words, can be its own autonomous, self-contained world.

FIGURE 1. xlife, a computer program playing Conway’s
Game of Life

Any game is a process based on rules, a formal source code that
can be expressed in logical language. There exist multiple models
of computing as games. Best known might be Conway’s Game of Life
(figure 1) with its particular implementation of so-called cellular au-
tomata. Cellular automata consist of simple elements in a matrix that
have a finite amount of states. Most typical is a binary state of ei-
ther zero or one or, in a graphical matrix, black and white. Obeying

57

58 3. COMPUTATION AS FRAGMENTATION

very simple transformation rules, the automata alter their states in de-
pendency of the states of neighboring cells. Cellular automata have
existed as a computational model since the 1940s. Conway’s Game
of Life, first published by the British mathematician John Horton Con-
way in 1970, is based only on the following rules: “If a black cell has
2 or 3 black neighbors, it stays black. If a white cell has 3 black neigh-
bors, it becomes black. In all other cases, the cell becomes white.”1

Remarkably, this simple game allows Turing-complete computation.
That means, any calculation can be made, and computer programs
can be written on the basis of cellular automata. There also exist com-
puter programming languages like Logo which are based on a game
logic. Designed for children, Logo allows arbitrary computations with
the help of the screen graphic of a turtle. Users have to program
the turtle to make certain movements on the two-dimensional screen
and this way perform calculations. In the 17th century, Georg Philipp
Harsdörffer conceived of his linguistic and poetic combinatorics as
games, worked under the name of “The Playing One” in a language
research society and described most of his combinatory devices in di-
alogical fiction books that instructed poetry as a social game.2 But
the playful nature of these poetic and artistic language computations
made them subject to parody and ridicule, later oblivion, from 1700
onwards until roughly 1900.

Gulliver’s Travels

In 1705, German universal scientist Daniel Georg Morhof published
a treatise De Arguta Dictione, which for the first time combined the
Jesuit acumen rhetoric (see p. 22) of witty points with Lullism in
a rhetoric based on combinatory principles.3 Next to Harsdörffer’s
mid-17th century works of scientific and poetic instruction, Morhof’s
book is one of the few systematic computational poetics, and theo-
ries of language and composition, based on algorithms. It stands,
next to Quirinus Kuhlmann’s poetry, as another culmination and end
point of the 17th century boom of Lullist thought. In many respects,

1Wikipedia concisely covers the subject in http://en.wikipedia.org/wiki/
Cellular_automaton and http://en.wikipedia.org/wiki/Conway’s_Game_of_
Life.

2Georg Philipp Harsdörffer. Mathematische und philosophische Erquickstunden.
Texte der frühen Neuzeit. Keip, Frankfurt (Nürnberg), 1990 (1636). [44] and
Georg Philipp Harsdörffer. Frauenzimmer Gesprächspiele. Deutsche Neudrucke:
Reihe Barock. Niemeyer, Tübingen, 1968-69 (1643-57). [43]

3Daniel Georg Morhof. De Acuta Dictione. Petrus Böckmannus, Lübeck, 1705.
[70]

http://en.wikipedia.org/wiki/Cellular_automaton
http://en.wikipedia.org/wiki/Cellular_automaton
http://en.wikipedia.org/wiki/Conway's_Game_of_Life
http://en.wikipedia.org/wiki/Conway's_Game_of_Life

GULLIVER’S TRAVELS 59

Lullism was a continuation of the medieval scholastic thinking in Aris-
totelian categories. Through Newton and scientific empiricism, and
the shift towards individual genius and against poetic rules in lit-
erature, Lullism became outmoded. As an obsolete and seemingly
bizarre scientific and poetic method it ended up being subject to ra-
tionalist parody.

FIGURE 2. The writing machine in the Grand Academy
of Lagado, illustration from Gulliver’s Travels

In Swift’s Gulliver’s Travels from 1726, the first-person-narrator vis-
its the flying academic island of Lagado and witnesses the mechanics
of a combinatorial machine (figure 2):

The first professor I saw was in a very large room, with
forty pupils about him. After salutation, observing me
to look earnestly upon a frame, which took up the great-
est part of both the length and breadth of the room, he
said perhaps I might wonder to see him employed in

60 3. COMPUTATION AS FRAGMENTATION

a project for improving speculative knowledge by prac-
tical and mechanical operations. But the world would
soon be sensible of its usefulness, and he flattered him-
self that a more noble exalted thought never sprang in
any other man’s head. Everyone knew how laborious
the usual method is of attaining to arts and sciences;
whereas by his contrivance the most ignorant person at
a reasonable charge, and with a little bodily labor, may
write books in philosophy, poetry, politics, law, mathe-
matics, and theology, without the least assistance from
genius or study. He then led me to the frame, about
the sides whereof all his pupils stood in ranks. It was
twenty feet square, placed in the middle of the room.
The superficies was composed of several bits of wood,
about the bigness of a die, but some larger than others.
They were all linked together by slender wires. These
bits of wood were covered on every square with pa-
per pasted on them, and on these papers were written
all the words of their language, in their several moods,
tenses, and declensions, but without any order. The pro-
fessor then desired me to observe, for he was going to
set his engine at work.4

Swift’s “Grand Academy of Lagado” is believed to be a parody on
the Royal Society, the British academy of sciences. The Royal Soci-
ety was founded out of the Invisible College in the mid-17th century
by, among others, Robert Boyle and astronomer and Lullist mathe-
matician John Wilkins, and Johann Valentin Andreae’s correspondent
Samuel Hartlib. The Hartlib papers CD-ROM which documents the
correspondence between Hartlib and others on the foundation of the
Royal Society,5 shows that Lullist combinatorics was indeed a major
subject of discussion and occupation in the Invisible College. Almost
one century later, Swift writes a rationalist satire on what he per-
ceives to be the speculative fancy of Lullism in academia. The chapter
also mocks a universal language project in which words, i.e. abstract
symbols, are replaced with concrete things, a parody, as it seems, on
pictorial universal languages as they were envisioned by Campanella,

4Jonathan Swift. Gulliver’s Travels. Washington Square Press, New York, 1960.
[97], part 3, chapter 5

5Mark Greengrass, editor. The Hartlib Papers. University Microfilms, Michigan,
1996. CD-ROM. [41]

THE LIBRARY OF BABEL 61

Andreae and Comenius (who was a close correspondent of the Invisi-
ble College and stayed in London between 1641 and 1642).

A shift in culture manifests in the fact that Swift’s description of
the text writing machine could work as a parody at all. In 1674, Quir-
inus Kuhlmann had envisioned, without a bit of irony, an Ars magna
librum scribendi, a Lullist ars of writing books, which would mechani-
cally generate all existing and all possible books.6 Unlike Swift whose
fictitious machine computes foreign, unreadable letters, Kuhlmann
thought, just as Harsdörffer, of human language as something inher-
ently computable. therefore suffices as a potentiality and thought
experiment on language and writing, and needs either an actual ma-
chine, nor its output to make its point.

The Library of Babel

The speculative premise of Jorge Luis Borges’ short story The Library
of Babel from 1941 is very similar to Kuhlmanns ars magna librum
scibendi.7 It envisions a nearly total library whose books are gener-
ated from a combinatorial mechanism and arranged into a virtually
infinite array of hexagons. Yet the story is told from the point of view
of an inmate of the library. He has no access to its source code, but
tells how this source code, or generative principle, became reverse-
engineered. In the first sentence of the story, he refers to the library
as “The universe (which others call the Library),” expressing a per-
sonal opinion that echoes cosmological Lullism. Like in other stories
of Borges, the subjective account is a simulatenous device of uncer-
tainty and irony. Fictitious editorial footnotes and remarks make the
text a product of fake philology. Because of the subjective narrative
perspective, all information about the library has to be taken with a
grain of salt. The first-person narrator appears to be a librarian since
he speaks of “the hexagons under my administration.” But his reli-
ability as an information source is no better than that of an inmate
of Plato’s cave. So it is merely his theory that “the Library includes
all verbal structures, all variations permitted by the twenty-five or-
thographical symbols.” In fact, the opposite can be concluded from
his statement. He also says that “each book is of four hundred and
ten pages; each page, of forty lines, each line, of some eighty let-
ters which are black in color,” so there are 80∗ 40∗ 410= 1344000

6In his Latin treatise Quirinus Kuhlmann. Prodomus. Lotho de Haes, Amster-
dam, 1674. [59]

7Jorge Luis Borges. The Library of Babel. In Ficciones, pages 79–88. Grove
Press, New York, 1941. [13]

62 3. COMPUTATION AS FRAGMENTATION

characters per book, consequently 251344000books in total, then, from
other data he gives, 32 books ∗ 5 shelves ∗ 5 walls = 575 books per
hexagon, and thus 251344000

575 hexagons in the entire library.
But it is just the speculation of the first person narrator that the

library can be explained by “combinative analysis,” as a computed
whole. Twelve years before the story appeared, Gödel had found
the logical paradox that formal systems cannot fully describe them-
selves, or, if they are consistent, cannot prove their own consistency.
In the Library of Babel, the book that describes the computation and
hence source code of the library, is only one arbitrary book of 251344000

at least one of which contains a refutation of this theory. The cat-
aloguing systems are part of the dilemma rather than its solution.
There exist “thousands and thousands of false catalogues,” and a “cat-
alogue of catalogues.” Through the letter combinatorics, differentia-
tion between data (books) and metadata (catalogues) becomes arbi-
trary. The library ends up being a self-referential linguistic universe
in which subject can no longer be told from object, and it is not clear
what represents what. While the library may contain all knowledge—
as envisioned by Kuhlmann earlier—it is incapable of classifying it. In
computer science terms, the namespace of its classifications is either
flat or infinite. And while Kuhlmann believes that the Ars magna li-
brum scribendi expands knowledge and wisdom, the Library of Babel
marks a melancholy and sceptical view of the same intellectual ex-
periment: Through its totality, the library is contingent. Everything
that can be thought has been thought in it already. At the same time,
this melancholy subverts itself. After all, there is a story, written by
Jorge Luis Borges, called The Library of Babel. This story is one clear-
cut and solid block of reference and metadata. The Library of Babel
might refute itself in any possible sense, but it does not refute itself
being the Library of Babel. According to its inmate’s speculation, it is
objective, mechanical, without history, existing “ab aeterno.” Yet the
library functions only through its human inmates who read the books.
Without them, it would be just storage of blotted paper. The books
are meaningless without human interpretation. While all human acts
might be anticipated in the book, those acts don’t exist without the
acts of reading. The melancholic contingency of writing, it follows, is
the motor of its interpretations. Only the interpretations, i.e. the cul-
tural appropriation of what only appears to be a natural, not human-
made artefact, make the library what it is. Its code is cultural even if
no culture, subjectivity and interpretation were involved in its initial
creation.

ROMANTICIST COMBINATORICS 63

Finally, the account of the first person narrator has to be seen as
a product of the library. So it implies its own refutation—a refuta-
tion that such a library does exist at all. In the end, as the narrative
points out, even the combinatorics of the library itself is subjective,
a phantasm of its inmates. On the one hand, the systems of order,
structure and control inherent in the library are non-semantic. On
the other hand they get continuously destroyed through semantics
being read into them—theological semantics, for example since there
are religious sects in the library holding certain beliefs about its sense
and inner workings.

Borges’ story renders combinatorics a purely speculative figure of
thought. It is a speculation about a speculation: a speculation created
around the speculative, subjective account of the first-person narrator.
This self-destructive, paradoxical moment sets the story apart from a
plainer, non-ironic speculation like Kuhlmann’s. For Kuhlmann, there
is still an identity of art, science, technology, philosophy, religion and
cosmology. This leads to an integralist model of computation as total-
ity. Computation does not yet imply, as in Borges, the negative of frag-
mentation and disintegration. Swift’s fiction of the Grand Academy
of Lagado stands precisely between Kuhlmann and Borges because it
cuts into the totality of Lullist epistemology and, with its rationalist
agenda, separates science from fancy, and observation from specula-
tion. As a result, Lullist language computation is no longer part of
serious science, but ends up in the realm of the obscure, occult, para-
philosophical thought experiments, and from there in the realm of
fiction and the arts. Only as arcane and speculative knowledge, is
Lullism able to enter Borges’ fantastic fiction.

Romanticist combinatorics

After Swift, combinatorial encyclopedism survives only in the niches
of literature and speculative poetic science. In his 1798/99 encyclo-
pedic fragment Das Allgemeine Brouillon,8 German romanticist poet
and essayist Novalis (Friedrich von Hardenberg) sketches a new com-
prehensive integration of all science and knowledge on the grounds
of an—itself sketchy and fragmentary—“calculus.” It is a new at-
tempt of a Lullist encyclopedia after Alsted, a speculative, essayis-
tic encyclopedia which consists of fragmentary entries on knowledge
in the light of a transcendental poetic philosophy. Its systematics
takes inspiration from Leibniz’ mathesis universalis, the project of a

8Novalis. Das Allgemeine Brouillon. Meiner, Hamburg, 1993 (1798/99). [72]

64 3. COMPUTATION AS FRAGMENTATION

thorough mathematical language and description of thought. How-
ever, Novalis’ “sketches” do not technically pursue the concept, but
remain an idealist experiment. They shift combinatorics and computa-
tion from concrete, formal-technical manipulation of symbols—as be-
fore in 17th century proetic poetry—to a purely intellectual-reflexive,
rather vague figure of thought: a meta-computational reflection of
philosophical computability.

Computation as a romantic figure of reflection exists also in the
Livre, the last project of French symbolist poet Stéphane Mallarmé.9

The book, which was never finished, should consist of ten volumes
which could be shuffled at will. Like 17th century Lullism, and like
the proto-Kabbalah of the Sefer Yetzirah, Mallarmé calculates the per-
mutations of the Livre, as 3628800. The volume which did get pub-
lished and is best known today is a visual-typographic poem, Un coup
de dès (A Throw of the Dice).10 It juxtaposes, so-to-speak, the math-
ematical permutation of the Livre with the random computation of
a die that gets superimposed on its protagonist. A sailor, the poet’s
alter ego as it seems, navigates a ship in a storm. Having forgotten to
make nautical calculations, he still refuses to throw the dice and give
up to fate: “Un coup de dès jamais n’abolira le hasard,” a throw of the
dice will never abolish chance, is a key sentence of the poem. The
last page imitates, by its typographic arrangement of words on the
page, a starry sky showing the polar star with the little bear, culmi-
nating in the line “UNE CONSTELLATION,” “A CONSTELLATION.” It
is, just as the mention of a book on combinatorial analysis in Borges’
Library of Babel, a point where the text turns, recursively, into an in-
dex (or meta-data) of itself. After all, “constellation” references both
the spatial arrangement of elements on the page and literally means
the arrangement of stars in the sky.

With its double meaning, “constellation” rehashes the correspon-
dence of macrocosm and microcosm known from Pythagorean, Neo-
platonist and Kabbalist thought. It no longer does so in the context
of a scientific worldview, but on the contrary, in self-chosen resis-
tance to the modern scientific paradigm. Its formal experiment of
integrating poetry, visual arts and musical composition into a Wag-
nerian total artwork is close to pre-modern art and thought such as
Quirinus Kuhlmann’s integration of combinatorics, cosmology, meta-
physics and letter permutations on rotary dials.

9Jacques Scherer. Le livre de Mallarmé. Gallimard, Paris, 1977 (1957). [90]
10Stéphane Mallarmé. Un coup de dés jamais n’abolira le hasard. Gallimard,

Paris, 1993 (1914). [66]

CONCRETE POETRY 65

Concrete poetry

Mallarmé’s poem inspired and instigated a whole experimental lit-
erary genre, the “constellations” of concrete poetry. Developed in
the 1950s, they likewise stood for spatial arrangements of letters on
pages, sometimes in conjunction with permutational poetic forms. Yet
the philosophy and metaphysics of concrete poetry was quite contrary
to Mallarmé. Its name was derived from Bauhaus artist and designer
Max Bill and his coinage of “concrete art” in 1936. In the spirit of
high modernism and functionalist architecture, most of concrete po-
etry sought to systematically reduce, rationalize and functionalize lit-
erature. A constellation of concrete poet Eugen Gomringer from 1969
reads:

no error in the system
no reror in the system
no rreor in the system
no rroer in the system
no rrore in the system
no rror ein the system
no rror ien the system
no rror ine the system
no rror in ethe system
no rror in tehe system
no rror in thee system
no rror in the esystem
no rror in the seystem
no rror in the syestem
no rror in the sysetem
no rror in the systeem
no rror in the systeem
no rror in the systeme
eno rror in the system
neo rror in the system
noe rror in the system
no error in the system11

Gomringer’s poem is a strictly programmed permutational text: The
error as embodied by the letter “e” shifts one position to the right
in every next line. The algorithm stays intact throughout the whole

11Translated from German from Eugen Gomringer. 3 variationen zu kein fehler
im system. In Eugen Gomringer, editor, konkrete poesie, pages 63–64. Reclam,
Stuttgart, 1972. [38]

66 3. COMPUTATION AS FRAGMENTATION

poem despite its reference to an error. It could as well be imple-
mented as a computer program. Indeed, Gomringer and his fellow
concrete poets Claus Bremer and Tim Ullrichs created word permu-
tational poems on computers in the early 1970s. “no error in the
system” is tautological in two respects: First of all, the lines become
redundant and repetitive as soon as one has grasped the algorithm.
In contrast to a Proteus poem like Scaliger’s “perfide sperasti divos te
fallere Proteu,” the algorithm is not being put down as a source code,
but as its full execution. Secondly, there is no Gödelian moment like
in Borges and Mallarmé, no self-reference which would make the sys-
tem implode in a recursive paradox of text and context. There is,
plainly, no error in the system Gomringer creates. The error—as the
misplaced “e”— is visible on the first glance, but ceases to be an er-
ror in the light of algorithm that perpetuates it throughout the lines.
There is an error in the system on the first glance, but no error in the
system on the second glance so that the message of the poem proves
right and therefore is superfluous. In Borges and Mallarmé there is
on the contrary no obvious contradiction in the system on the first
glance, but an abyss of epistemological paradoxes upon more thor-
ough reflection.

Max Bense and “information aesthetics”

The poetics of concrete poetry and its constellations was first written
down by Gomringer himself in his 1954 essay From Line to Constella-
tion:12

Our languages are on the road to formal simplification,
abbreviated, restricted forms of language are emerging.
The content of a sentence is often conveyed in a sin-
gle word. Longer statements are often represented by
small groups of letters. Moreover, there is a tendency
among languages for the many to be replaced by a few
which are generally valid. Does this restricted and sim-
plified use of language and writing mean the end of
poetry? Certainly not. Restriction in the best sense—
concentration and simplification—is the very essence of
poetry. [. . .] The aim of the new poetry is to give poetry
an organic function in society again, and in doing so to

12Eugen Gomringer. vom vers zur konstellation. In Eugen Gomringer, edi-
tor, zur sache der konkreten, volume 1, pages 7–12. Erker-Verlag, St. Gallen,
1988 (1954). [39], English translation from http://www.ubu.com/papers/
gomringer01.html

http://www.ubu.com/papers/gomringer01.html
http://www.ubu.com/papers/gomringer01.html

MAX BENSE AND “INFORMATION AESTHETICS” 67

restate the position of poet in society. Bearing in mind,
then, the simplification both of language and its written
form, it is only possible to speak of an organic function
for poetry in terms of the given linguistic situation. So
the new poem is simple and can be perceived visually as
a whole as well as in its parts. It becomes an object to be
both seen and used: an object containing thought but
made concrete through play-activity (denkgegenstand-
denkspiel), its concern is with brevity and conciseness.
It is memorable and imprints itself upon the mind as a
picture. Its objective element of play is useful to mod-
ern man, whom the poet helps through his special gift
for this kind of play-activity. Being an expert both in
language and the rules of the game, the poet invents
new formulations. By its exemplary use of the rules of
the game the new poem can have an effect on ordinary
language.

The constellations were, in this sense, not strictly a computational
text form; the definition of the poet as an inventor of “new formu-
lations” which apply “rules of the game” however expresses a com-
putational understanding of writing and literature. This idea found
its theoretical underpinning in the philosophy of Max Bense, the ma-
jor intellectual mentor of concrete poetry. Bense’s theory, dubbed
“information aesthetics,” combined Claude Shannon’s technical infor-
mation theory with Charles S. Peirce’s semiotics and philosophical
aesthetics into a formalist, computational theory of modern art. By
dialectical implication, it was also an aesthetic theory of computation
based on formalist modern art. Formalisms in modern art, architec-
ture and design, especially those in abstract painting and Bauhaus de-
sign, formed an important pretext for Bense’s theory and its project
of radically abandoning semantics.13 Classical semiotics still thought
of signs having a meaning—for example through an artificial, ab-
stract relation between sign and object (“symbol”) through outer re-
semblance (“icon”) or through the sign being a trace of the thing it
represents (“index”). In 1948, Claude Shannon, a telecommunica-
tion engineer at the AT&T Bell Labs, coined a concept of information

13His extreme formalism was counterbalanced, one could argue, by his parti-
sanship for artistic experimentation and play, and for avant-garde art in the 1950s,
a period where particularly in Germany realism, existentialism and post-symbolist
introversion dominated literature.

68 3. COMPUTATION AS FRAGMENTATION

that did away with all semantics.14 It made information a technically
quantifiable, measurable entity for determining (a) the transmission
capacity of a channel and (b) the technical redundancy of data. These
concepts, and Shannon’s mathematical formulas, are still fundamen-
tal to digital information processing, for example for determining the
throughput capacity of a network line and compression of data and
files.

Bense wasn’t interested in Shannon’s theory as a pragmatic engi-
neering perspective, but as a philosophical tool with which to rein-
vent aesthetics and poetics, stripping it bare, as he hoped, from any
concept of meaning. His combination of semiotics with technical in-
formation theory was an artifice for turning the humanities and art
criticism upside down. It resulted in a purist modernism which was
ideological just in its ostensible refusal of ideology, and metaphysical
in its radical refusal of metaphysics. After all, Bense’s conflation of in-
formation theory with semiotics stripped computational forms of art
and writing from their historical, intellectual implications. Mallarmé
and other late romanticist poets like the German Stefan George had
been the main sources of inspiration for the formal innovation of con-
crete poetry. Bense’s theory however sought to look only at the form
and cut all philosophical-metaphysical ties.

Pythagorean and occult metaphysics of macrocosmic and micro-
cosmic equivalence had been pushed outside rational science since
the 18th century. But not only romanticism remained heavily in-
debted to this tradition, but also, for example, the avant-garde word-
play poetry of the Russian Futurist Velimir Khlebnikov. On the
contrary, Bense and the post-war formalist avant-garde wanted to
do away with metaphysics entirely and refound aesthetics on the
grounds of modern science and technology. This move obscured the
romanticist roots not only of concrete poetry,15 but also of Bense’s
philosophy itself. Like Novalis in his encyclopedic project, Bense took
heavy inspiration from Leibniz’ mathesis universalis, the post-Lullist
attempt of unifying all human knowledge on mathematical grounds.
Bense’s move to clear the project from romanticist connotations and

14Claude E. Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, 27:379–423, July 1948. [92]

15In his preface to the anthology konkrete poesie, Reclam-Verlag 1972, Gom-
ringer credits, among others, Mallarmé and sinologist Ernest Fenollosa whose essay
The Chinese Written Character as a Medium for Poetry was a major influence on the
poetics of Ezra Pound.

MAX BENSE AND “INFORMATION AESTHETICS” 69

indeed any kind of overt metaphysics reflects, obviously, his experi-
ence with totalitarian politics of The Third Reich and Stalinist post-
war East-Germany.

Bense’s idea of formal programmation as a model of an ‘objective’
art and philosophy ran in parallel to French linguistic structuralism
of the 1950s and 1960s. It anticipated the so-called “linguistic turn”
in the humanities of the late 1960s. The linguistic turn did not only
happen in theory, but also in art in what critic Lucy Lippard described
as the “dematerialization of art” around 1970. Pop art and Fluxus
turned into concept art that, in the works of Joseph Kosuth, Art and
Language, Lawrence Weiner and On Kawara for example, consisted
only of written instructions. The first concept art show, curated by
critic Jack Burnham in New York in 1970, accordingly had the title
Software. It juxtaposed concept art works with experimental com-
puter software development projects such as Ted Nelson’s first proto-
type of a hypertext system. Burnham, a close collaborator of artist
Hans Haacke before the latter turned from rigorous formalism to po-
litically activist art, took his inspiration from cybernetics and general
systems theory. The theoretical base was similar, but not identical to
that of the continental European discourse of Bense and literary semi-
otics and structuralism.16 Burnham’s ideas, too, imposed a rigorous
scientific formalism onto art. They were more concerned with the
visual arts than poetry though, and with the detachment of art from
material objects more than with computational algorithmics. Soft-
ware was, as Edward A. Shanken puts it in an essay on Burnham’s
exhibition, a “metaphorical premise,” or device, that emphasized soft-
ware as being different from hardware, not software as executable
instruction code.

The underground art and activist journal Radical Software ap-
peared under that metaphorical premise as well. Founded in the
same year as the Software exhibition, it propagated an “Alternate Tele-
vision Movement,” juxtaposing aesthetic reflection with political de-
bates about free media and publicly accessible radio spectrum, much
like the contemporary free wireless network movement. In addition,
it contained hands-on technical instruction for building and manip-
ulating video equipment. Otherwise, the journal conceived of “soft-
ware” purely as dematerialized art, and did not cover computer pro-
gramming.

16Although a volume of Burnham’s collected essays appeared, alongside the
German translation of Abraham M. Moles’ Art and Computer, in a German art book
series under the title Kunst und Strukturalismus (Art and Structuralism).

70 3. COMPUTATION AS FRAGMENTATION

Modelled after the Bauhaus, Bense’s older program turned poetry,
concrete poetry in particular, into language design and art into visual
design. These efforts were systematically pursued at the Hochschule
für Gestaltung (School for Design) in Ulm, where Bense taught next to
his regular professorship in nearby Stuttgart. Hochschule für Gestal-
tung was founded as a “second Bauhaus.” Its director was Max Bill
and faculty included former Bauhaus professors Johannes Itten and
Josef Albers. Later in the 1990s, the ZKM media arts center nearby in
Karlsruhe was established as yet another attempt of a new Bauhaus,
this time as a “Bauhaus of Second Modernism” according to its initia-
tors.

Situationism, Surrealism and psychogeography

In a counter-reaction to Bill, Bense and their functionalist thinking,
Danish painter Asger Jorn, previously a member of a Surrealist splin-
ter group in 1940s Paris, founded a International Movement for an
Imaginist Bauhaus in 1956. In 1958, it became part of the Situation-
ist International. In January 1959, the German section of the S.I.
continued the opposition to Bense and Bill with a prankish attack on
Bense in Munich: A public lecture of Bense was announced and once
the audience had gathered, a tape recorder was switched on and the
voice on the tape declared that Bense was unable to come and would
instead give his talk in “cybernetic form.” The talk was a deliberately
nonsensical cut-up of German, Latin and French phrases with garbled
quotations from Marx and Hegel. Yet the audience stayed through
the lecture and applauded in the end. In the prank, the Situation-
ists took Bense’s cybernetic poetics and turned it as a tactical device
against himself. The stunt displayed that his attempt to do away with
semantics has its blind spot precisely in the semantics of his own state-
ments that negated semantics. Secondly, it debunked the concept of
technologically produced information as objective which the Situa-
tionists countered with a post-romantic and post-surrealist concept
of aesthetic subjectivity. Like Jorn, the German Situationists attacked
Bense, according to the S.I.’s report of its 3rd conference, for his “per-
fect continuation of constructivism.” In his essay Open Creation and
its Enemies, published in 1960 in the fifth issue of the journal of the

SITUATIONISM, SURREALISM AND PSYCHOGEOGRAPHY 71

Situationist International,17 Jorn likened Bense to the concrete poetry-
like French Lettrist poets, declaring him “the German equivalent of
this anecdote of systematic, paradialectic, and deadly boring ‘Lettrist
thought’.”

The flip-side of this critique was hostility of the Situationists to
both artistic experimentation with new technology and philosophical
reflection on computation. This hostility manifested itself particularly
in the repeated Situationist attacks on communication theorist Abra-
ham Moles (see p. 92). With their polemics against formalism and
for “imagination,” the S.I. clearly continued the ideas of the French
Surrealists who in turn were heavily indebted to romanticism. In
his 1924 Manifesto of Surrealism, André Breton wrote that “We are
still living under the reign of logic: this, of course, is what I have
been driving at. But in this day and age logical methods are appli-
cable only to solving problems of secondary interest.”18 His surreal-
ism expresses laconic indifference to new technology: “Radios? Fine.
Syphilis? If you like. Photography? I don’t see any reason why not.
The cinema? Three cheers for darkened rooms. War? Gave us a good
laugh. The telephone? Hello.”19 Along the lines of this technological
scepticism, Surrealist “automatic writing” for example was not com-
putational, but a psychic automatism that took the unconscious as its
source code, not a calculus. It was still a foreign idea to Surrealism
that computational formalisms could themselves be highly subjective
and culturally coded, as the Pythagorean and Kabbalist tradition and
the “semantics” of, for example, Llull’s “alphabetum” suggest. The
Situationist concept of “psychogeography” had its roots in the aimless
Surrealist drifts through Paris described in Breton’s 1928 novel Nadja
and in Louis Aragon’s 1926 novel Le Paysan de Paris, and meant a
purely subjective, para-scientific exploration of (chiefly) urban spaces
through aimless drift. The surrealist drifts in turn were indebted to
the romanticist “flâneur,” a wanderer “botanising the asphalt” as cul-
tural theorist Walter Benjamin put it in his essay on 19th century poet
Charles Baudelaire.20

17Asger Jorn. La création ouverte et ses ennemis. In: Internationale Situation-
niste, editor. Internationale situationniste. Édition augmentée. Librairie Arthème
Fayard, Paris, 1997 (1958-1969)., pages 175–196. [52], English translation online
at http://www.infopool.org.uk/6004.html

18André Breton. Manifesto of Surrealism. In Manifestoes of Surrealism, pages
1–48. Ann Arbor Paperbacks, Ann Arbor, Michigan, 1924. [14], p. 9

19Breton [14], p. 46
20Walter Benjamin. Charles Baudelaire: A Lyric Poet in the Era of High Capital-

ism. New Left Books, London, 1973. [8].

http://www.infopool.org.uk/6004.html

72 3. COMPUTATION AS FRAGMENTATION

Computation and romanticist urban drift did not converge un-
til the invention of “generative psychogeography” in the late 1990s
through the Dutch artistic project http://www.socialfiction.org.
Its .walk is a “psychogeographic computer,” operated by pedestrians
who walk through street grids like electrons flow through the gates
of computer chips. The .walk computer can execute simple program
code like the following:

// Classic .walk
Repeat
{
1 st street left
2 nd street right
2 nd street left
}

Psychogeographic computing has a double effect: It demystifies com-
puting, turning it into a radically simple and popular low-tech and
low-cost operation. Secondly, in the spirit of Surrealism and Situa-
tionism, it liberates the imagination of what a computer can be and
which purposes it may serve. Socialfiction.org thought has expanded
and systematized this idea into a University of Speculative Program-
ming, collectively editable Wiki website http://twenteenthcentury.
com/uo/index.php/SpeculativeProgramming. The site sketches the
experimental potential of speculative programming as follows:

• pataphysical; pataphysics is a “science of imaginary so-
lutions” according to its inventor, late 19th century pre-
Surrealist novelist and dramatist Alfred Jarry. It could also
be called a poetic, absurdist para- and anti-science. A pat-
aphysical appropriation of computing factually exists in the
work of the Oulipo poetry workshop (see p. 88);

• “casting spells on the OS,” reflecting magic as a forerunner
of code execution;

• “social engineering,” especially in the form of artificial intelli-
gence chat robots; which reminds of the S.I.’s tactical use of
a manipulated tape recording as an analog Max Bense chat
roboter. Since Alan Turing, chat robots are the fundamental
to artificial intelligence research (see p. 106)

• questioning the traditional computer; thus, by implication
also reflecting on the cultural history of computing aside
from its materialization in electronic hardware.

“Speculative programming” reads as an attempt to sum up all philoso-
phies and the complete cultural-imaginative history of computation,

http://www.socialfiction.org
http://twenteenthcentury.com/uo/index.php/SpeculativeProgramming
http://twenteenthcentury.com/uo/index.php/SpeculativeProgramming

MARKOV CHAINS 73

including everything that is described in this booklet, too. Comput-
ing becomes a figure of thought and reflection not only in theory, but
also in artistic practice. While the same could be said about Bense’s
philosophy, the implications are contrary. Instead of acknowledging
subjectivity and imagination put into computations, computation be-
comes a token for a culture of scientific and engineering objectivity.
Where Bense models art, criticism and aesthetics after computing, su-
perimposing the latter on the former, speculative programming does
the opposite. It models computation after the arts and and specula-
tive imagination.

Markov chains

In Bense’s “information aesthetics,” art criticism turns, literally, into
computation of data. Interpretation of meaning is substituted with
formal analysis according to objectively quantifiable parameters, for
example through word statistical analyses of writing. In Italo
Calvino’s 1979 novel “If on a Winter’s Night a Traveller,” the first
person narrator, a writer, encounters a woman who refuses to read
his novels, but instead feeds them as data into a statistical program:

She explained to me that a suitably programmed com-
puter can read a novel in a few minutes and record the
list of all the words contained in the text, in order of
frequency. “That way I can have an already completed
reading at hand,” Lotaria says, “with an incalculable
saving of time. What is the reading of a text, in fact, ex-
cept the recording of certain thematic recurrences, cer-
tain insistences of forms and meanings?. . . ”21

Three subsequent pages of the novel are dedicated to the word
statistics Lotaria computes. A footnote explains that Calvino took
them from a computer-philological research work “Spogli elettron-
ici dell’italiano contemporaneo” edited by linguist Mario Alinei in
1973.22 So Calvino’s novel writes a parodistic critique of Bensian
“information aesthetics” much like Swift early 18th century satire of
Lullism. Claude Shannon’s 1948 paper A Mathematical Theory of Com-
munication describes such an algorithm for statistical text analysis:

21Italo Calvino. If on a Winter’s Night a Traveller. Everyman Publishers, London,
1993 (1979). [24]

22Mario Alinei and Alfredo Schiaffini. Spogli elettronici dell’italiano delle origini
e del Duecento. Mouton, The Hague, 1968. [3]

74 3. COMPUTATION AS FRAGMENTATION

“To construct [order-1 letter-level text] for example,
one opens a book at random and selects a letter at ran-
dom on the page. This letter is recorded. The book
is then opened to another page and one reads until
this letter is encountered. The succeeding letter is then
recorded. Turning to another page this second letter is
searched for and the succeeding letter recorded, etc. A
similar process was used for [order-1 and order-2 letter-
level text, and order-0 and order-1 word-level text]. It
would be interesting if further approximations could be
constructed, but the labor involved becomes enormous
at the next stage.”23

Shannon’s method is, in other words, to scan a text for the transition
probability of letter occurences, resulting in transition probability ta-
bles which can be computed even without any semantic or grammati-
cal natural language understanding. (Otherwise, the program would
require artificial intelligence.) This algorithm implements the stochas-
tic model of Markov chains invented by the Russian mathematician
Andrei Markov in 1906. Markov chains can be used not only for
analyzing texts—and any other kind of information—, but also for re-
combining them based on the transition probabilities of their syntac-
tical elements. In 1959, Theo Lutz, a computer scientist who collabo-
rated with Max Bense at Technische Hochschule Stuttgart, processed
phrases from Kafka’s novel The Castle with a Markov chain program.
The result, called “stochastic Texts,” was published in Bense’s journal
for contemporary experimental poetry. Shortly after, the first mani-
festo of the Oulipo (see p. 88) proposed to reinvigorate the old po-
etic collage form of the cento “by a few considerations taken from
Markov’s chain theory.”24

Independently from Bense, Lutz and Oulipo, critic and Joyce ex-
pert Hugh Kenner wrote, in collaboration with programmer Joseph
O’Rourke, a text recombination program based on Markov chains.
Dubbed Travesty, its source code was published in a 1984 issue of
the popular computer magazine BYTE. For the algorithm, Kenner cred-
ited the “long-ago idea from the Father of Information Theory, Claude
Shannon.” The code was adapted in 1990 by Larry Wall, creator of

23Claude E. Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, 27:379–423, July 1948. [92]

24François Le Lionnais. Lipo: First manifesto. In: Warren F. Motte, editor.
Oulipo. A Primer of Potential Literature. University of Nebraska Press, Lincoln, Lon-
don, 1986., pages 26–28. [61], p. 27

TRISTAN TZARA AND CUT-UPS 75

the Perl programming language, and published as a programming ex-
ample in the first edition of the book Programming Perl.—The second
edition of the same book featured examples of “Perl poetry”25 (see p.
94)—With poet Charles O. Hartman, Kenner co-authored Sentences,
a volume of poems generated with the help of travesty.26 In 1994,
experimental poet and former Fluxus member Jackson MacLow gen-
erated a number of his 42 Merzgedichte in memoriam Kurt Schwitters
with the Kenner’s travesty program and, one year later, Austrian con-
temporary composer Karlheinz Essl reassembled a Bach violin sonata
through Markov chain computation, calling it “Bach sausage.” Like-
wise, the DOS-based poetic language manipulation toolkit POE de-
signed by Austrian experimental poets Ferdinand Schmatz and Franz
Josef Czernin (see p. 112) includes a Markov chain function. Around
the same time, numerous popular Markov chain-based text manip-
ulation programs were written, such as Dissociated Press, a stan-
dard function of the GNU Emacs text editor, TextMangler and Decon-
structor for MacOS, dadadodo by Jamie Zawinsky, the former project
leader of the Mozilla web browser, or Mark V. Chaney for DOS.

Since Shannon’s Mathematical Theory of Communication, Markov
chains have arguably become the third most popular algorithm for
computational text generation, next to permutation and recursion.
Markov chains are a stricly analytical, not synthetic method, being
agnostic to the data they process. They work on arbitrary input, con-
trary to older syntheticly combinatory methods such as Llull’s Ars
and Renaissance proteus poems which always processed fixed, pre-
inscribed words. While Llull’s ars abstracts data from algorithms
through its separation of the tabula from the figurae, the figurae are
designed to process only the particular, immutable elements of the
static tabula. Even Swift’s and Borges’ dystopias of language comput-
ing, with their ontological randomness and contingency, still rely on
a fixed data set, the alphabet.

Tristan Tzara and cut-ups

One could believe that poetic computations of mobile data sets could
not be imagined before modern computers were invented. However,

25Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.
O’Reilly, Cambridge, Köln, Paris, Sebastopol, Tokyo, 1996. [99]

26Charles O. Hartman and Hugh Kenner. Sentences. Sun and Moon Pres, Los
Angeles, 1995. [45]

76 3. COMPUTATION AS FRAGMENTATION

the first modern art work based on a computational process and arbi-
trary input data dates back to 1923. Tristan Tzara’s advised To Make
a Dadaist Poem as follows:

Take a newspaper.
Take some scissors.
Choose from this paper an article the length you want
to make your poem.
Cut out the article.
Next carefully cut out each of the words that make up
this article and put them all in a bag.
Shake gently.
Next take out each cutting one after the other.
Copy conscientiously in the order in which they left the
bag.
The poem will resemble you.
And there you are—an infinitely original author of
charming sensibility, even though unappreciated by the
vulgar herd.27

What Tzara describes here is an algorithmic process, in fact, a simple
computer creating random permutations of arbitrary input. For the
first time after the romantic period, poetics defies the concept of the
genius and turns into formal instruction again; formal to the point
where it can be mechanized. The 18th and 19th century ridicule of
formalisms in composition and art that began with Swift is taken up
here and turned against itself. Tzara’s “infinitely original author of
charming sensibility, even though unappreciated by the vulgar herd”
clearly mocks the romantic genius.

While the Dadaist poetic algorithm is the same as the word per-
mutations in the Sefer Yetzirah and in proteic poetry since Optatianus
and Scaliger, its imagination and ideology is reversed: There is chaos
instead of order, fragmentation instead of totality. It also lacks, on the
first glance at least, any metaphysics and cosmology of macro- and
microcosm. If one juxtaposes the Dadaist poem to Mallarmé’s Livre,
then it reads as the latter’s radical other; it uses a similar algorithm,
by implication also a similarly free form typography, but contradicts
both the romanticist aesthetics of the genius and the representation
of a Pythagorean macrocosmic order in the microcosm of the artwork.

27Tristan Tzara. Pour fair une poème dadaïste. In Oeuvres complètes. Gallimard,
Paris, 1975. [98], English translation online at, among others, http://www.poets.
org/viewmedia.php/prmMID/5774

http://www.poets.org/viewmedia.php/prmMID/5774
http://www.poets.org/viewmedia.php/prmMID/5774

JOHN CAGE’S INDETERMINISM 77

Still, the ostentative nihilism of Tzara’s random computation cre-
ates another metaphysics. Gysin’s and Burroughs’ “Cut-ups” for ex-
ample are a straight-forward adaption of Tzara’s method. Burroughs’
essay The Cut-Up Method of Brion Gysin acknowledges this in its first
sentence:

At a surrealist rally in the 1920s Tristan Tzara the man
from nowhere proposed to create a poem on the spot
by pulling words out of a hat. A riot ensued wrecked
the theater. [. . .] In the summer of 1959 Brion Gysin
painter and writer cut newspaper articles into sections
and rearranged the sections at random.28

However, the cut-up differs from Tzara’s Dadaist poetics in several
respects. In the same text, Burroughs refers to the “place of mesca-
line hallucination: seeing colors tasting sounds smelling forms.” As a
magical and ecstatic technique, the cut-up resuscitates the old meta-
physics that Tzara seemed to have done away with.

John Cage’s indeterminism

The same can be observed in the adaption of the Dadaist random
montage music in the “indeterminist” music of John Cage his con-
temporaries and students from Earle Brown, Morton Feldman, Chris-
tian Wolff to the Fluxus movement. In John Cage’s piece Atlas Eclip-
ticalis, an astronomical map serves as a superficially random score,
and establishes, once again, a macrocosmic-microcosmic correspon-
dence which justifies a randomness of art through a higher-order ran-
domness of nature. Cage also uses the Chinese I Ching, the Book
of Changes, as a compositional algorithm for a number of his works,
among them Music of Changes and Roaratorio.29 For these purposes,
he later used a computer software adaption of the called IC, written
in C for DOS by Andrew Culver.30 Cage replaces the cosmological-
mathematical order of Pythagorean Western music with a metaphys-
ical anarchism. This anarchism nominally draws from Eastern phi-
losophy, but in fact relied only on superficial studies—through the
attendance of a few evening lectures—of the non-traditional, highly
Americanized Zen of Daisetz T. Suzuki.

28William S. Burroughs. The Cut-Up Method of Brion Gysin. In: William S.
Burroughs. The Third Mind. Viking, New York, 1978. [17]

29John Cage. Roaratorio. Ein irischer Circus über Finnegans Wake. Athenäum,
Königstein/Taunus, 1982. [20]

30The program is still available under http://www.newmus.net/apps/iching.
exe.

http://www.newmus.net/apps/iching.exe
http://www.newmus.net/apps/iching.exe

78 3. COMPUTATION AS FRAGMENTATION

Just like Tzara’s Dadaist poem manifests an anti-romanticism that
nevertheless shares many formal traits with late-romanticist literary
experimentation, Cage’s approach to musical composition could be
seen as anti-romantic and ultimately anti-Western while owing more
to Western tradition than it acknowledged. Cage’s anti-tradition is
most pronounced in Credo in Us from 1942, a piece that pokes fun at
late romanticist symphony music by playing it randomly from gramo-
phone records. It could be called the first musical piece using “scratch-
ing” and “Plunderphonics.” Still, Cagean indeterminism remained re-
ciprocal to the mathematical determinism of Western music. It only
replaced the Pythagorean formula of symmetry through a formula
of chance. It seems only logical that Cage formalized his composi-
tion methods and implemented them into computer software tools.
He used 24 custom-written computer programs for his composition.31

Cage wrote computational poetry, too. With his method of “reading
through,”32 he compressed literary works like Joyce’s Finnegans Wake
to a fraction of their original size. The algorithm he used were mesos-
tichs, the retrieval of words in a text whose middle letters match the
letters of a name; electronic poet Jim Rosenberg wrote him a custom
computer program Mesolist for this purpose.33

It seems paradoxical that Cage sought to create indeterminacy
through algorithms. While this contradiction superficially resembles
the link of algorithms and the imaginary in psychogeographical com-
puting, it in fact is more naive since it relies on a dubious under-
standing of “chance.” Algorithms can be used for chance operations
as Tzara’s Dadaist poem shows, and—with much older origins prob-
ably in ancient India—the dice as a random computing device. But
such random operations create stochastic chance, not philosophical-
ontological chance. Throwing a die is a stochastic chance operation
with the possible outcome of 1, 2, 3, 4, 5, 6. Since these results are
foreseeable as the set of potential results, they represent not an on-
tological, but a deterministic chance. Mallarmé describes it precisely
in his sentence: “throwing the dice never abolishes chance.” Onto-
logical chance, and therefore true indeterminacy, would occur if the
die would crack, vanish, or show the number seven. With pieces
like Atlas Eclipticalis, Variations I/II and all I Ching-based composi-
tions, it seems as if Cage misreads stochastic chance for ontological

31According to Culver’s website http://www.anarchicharmony.org/People/
Culver/CagePrograms.html.

32John Cage. Roaratorio. Ein irischer Circus über Finnegans Wake. Athenäum,
Königstein/Taunus, 1982. [20] contains a chapter Reading through Finnegans Wake

33Referenced on Andrew Culver’s website

http://www.anarchicharmony.org/People/Culver/CagePrograms.html
http://www.anarchicharmony.org/People/Culver/CagePrograms.html

JOHN CAGE’S INDETERMINISM 79

chance. The mere fact that a musical piece sounds “like John Cage”
or “Cagean” because of its atonality and lack of development for ex-
ample, disproves Cage’s claim of “indeterminacy.” If his music were
really, ontologically indeterminate, it should—for example—be able
to sound like a Britney Spears song, too.

This example illustrates a general limit of computation and soft-
ware. There is, first of all, no way of turning them into anti-formal,
anti-determinist technology, either through stochastic chance, disrup-
tion of semantics (as in the cut-ups) or a higher-order complexity of
programming (as in artificial intelligence, see p. 106). Secondly, the
formalisms are always meaningful. In the case of Cage, they seem to
subvert the intended anarchist ontology of chance—as it is grounded
in 20th century aesthetics, philosophy and religion—into a stochas-
tic determinism. This unveils the blind spots of Cage’s compositional
approach and the reason why an “indeterministic” chance composi-
tion of Cage can sound strikingly similar to totally deterministic se-
rial compositions of Stockhausen or Boulez. If one compares Cage
and Stockhausen and their seemingly contrarian understanding of
musical composition, one can practically observe how deterministic
over-complexity turns into chaos and conversely, chaos ends up as a
formalism and cliché.

Tzara’s poem struggles with this problem only to a lesser degree.
As a parodistic and cynical device, it does not have to match up to
an ontological indeterminism. The relative lack of cynicism is what
distinguishes Cagean aesthetics from Dadaist provocation. Neither
do Burroughs’ cut-ups run into the trap of deterministic chaos be-
cause they are tools for reaching another, magical, hallucinatory and
ecstatic order, and use language to overcome it.

In addition to permutational shuffling, the cut-ups frequently em-
ploy recursion, the processing of something through itself, as their
poetic method. In Cut-Ups Self-Explained, the last paragraph of Bur-
roughs’ The Cut-Up Method of Brion Gysin applies the method—or
algorithm—to its own instruction:

ALL WRITING IS IN FACT CUT-UPS OF GAMES AND
ECONOMIC BE HAVIOR OVERHEARD? WHAT ELSE?
ASSUME THAT THE WORST HAS HAPPENED EX-
PLICIT AND SUBJECT TO sTRATEGY lS AT SOME

80 3. COMPUTATION AS FRAGMENTATION

POINT CLASSICAL PROSE. CUTTING AND REARRANG-
ING FACTOR YOUR OPPONENT WILL GAIN INTRO-
DUCES A NEW DIMENSION YOUR STRATEGY. [. . .]34

But what is the practical effect of this self-processing of text? As in
Cage’s conflation of stochastic chance and ontological indeterminacy,
there seems to be a surplus of imagination projected into the formal-
ism; as if texts were becoming lucid, pronouncing hidden truths and
achieving occult effects through their underlying formal operations.
However, the results perpetually fail to match up to those expecta-
tions. The recursive processing of the cut-up instruction through it-
self at least points out a paradox: within a permutative, random or
stochastic process that mobilizes and rearranges words, the algorithm
itself remains an immutable center. A random poem like Tzara’s is not
random to the extent it relies on a clearly defined, fixed algorithm. It
can digest and transform all writing with the singular exception of
itself. Otherwise, it would destroy its own instruction and with it the
digestion and transformation of writing. Once again, the problem re-
mains that in any running computational program, the instruction—
or game rule—remains, internally, a formalism that is not part of the
game.

Italo Calvino and machine-generated literature

In his 1967 lecture Cybernetics and Ghosts,35 Italian novelist Italo
Calvino concludes that computer-generated poetry tends to be “clas-
sicist;” classicist in the understanding of Italian, French and Spanish
literary history, as a poetry governed by strict normative poetics and
rules of form. In spite of this restriction, he sketches a general model
of language and narration as computations. Calvino speculates that
early humans had a limited repertory of sounds and words and there-
fore needed combinatorics to expand a scarcity of vocabulary into a
richness of communicative means. It follows for him that literature is
a “combination game.” He, the poet, can be replaced by a “mechani-
cal device.” In his reasoning, Calvino cites the linguistic and semiotic
structuralism of ethnologist Claude Lévi-Strauss and Russian philolo-
gist Vladimir Propp. This reference reflects Calvino’s exposure to the
structuralism of the Tel Quel group around Julia Kristeva and Roland
Barthes whose meetings he attended in Paris.

34William S. Burroughs. The Cut-Up Method of Brion Gysin. In: William S.
Burroughs. The Third Mind. Viking, New York, 1978. [17]

35Italo Calvino. Cybernetics and Ghosts. In The Uses of Literature, pages 3–27.
Harcourt, San Diego, 1982 (1967). [22]

SOFTWARE AS INDUSTRIALIZATION OF ART 81

In his 1927 book Morphology of the Folktale, Vladmir Propp con-
cluded from a structural analysis of Russian fairy tales that their plots
could be reduced to one universal formula.36 This formula denotes
both possible combinations and variations. It is, in fact, an algo-
rithm which could be adapted as a computer program for generat-
ing arbitrary fairy tale plots. Propp’s formalist philology appears like
a straightforward continuation of Lullist encyclopedism, the exhaus-
tion of a field of knowledge through combinatorial means. Vice versa
a Lullist language generator like Harsdörffer’s Denckring manifests
proto-structuralist linguistics. In both Harsdörffer and Propp, syn-
thetic totalism and analytical fragmentation are two sides of the same
coin, and their algorithms can be used for either.

As a device of analysis, Propp’s morphology first of all gives insight
into the formulaic, constructed nature of folk tales. It thoroughly de-
bunked the 19th century romanticist view of the folk tale as an irregu-
lar and chaotic manifestation of popular fantastic imagination (which
was superior to highbrow art). The same romanticist idea continued
in surrealism, with its fondness of popular culture and trash—like, for
example, the Grand Guignol gore theater shows—and to some degree
in Situationism with its detournement of comic strips and martial arts
movies (like René Vienet’s Can Dialectics Break Bricks?). With its dis-
covery of a popular culture which is so formulaic that it is computable,
Propp’s analysis could on the other hand be considered a forerunner
of psychogeographical computing with its populist low-tech approach
to programming. With their emphasis on popular imagination and
popular cultural practices, both Propp and psychogeographical com-
puting themselves owe to romanticist thinking. Italo Calvino’s Invis-
ible Cities, a novel which describes imaginary cities and generates
them through a combinatorics of fantastic attributes, manifests an-
other intersection of computation and romantic urbanism.37

Software as industrialization of art

Movie plot generators. In a newspaper essay Make Your Own
Movie which appeared in the book Misreadings, Umberto Eco turns
Propp’s combinatory plot generation and, by implication, structural-
ist morphologies into a parody. He proposes a number of algorithms
for generating movie plots, each of which sums up the stereotypi-
cal mannerisms of the prototypical angry young film director and

36Vladimir Propp, editor. Morphology of the Folktale. University of Texas Press,
Austin, Texas, 1968 (1927). [78]

37Italo Calvino. Invisible Cities. Harvest Books, Fort Washington, 1978. [21]

82 3. COMPUTATION AS FRAGMENTATION

the filmmakers Michelangelo Antonioni, Jean-Luc Godard, Ermanno
Olmi and Luchino Visconti.38 The Antonioni algorithm works as fol-
lows:

Anx emptyy lot.z Shek walks away.n

Variants Key
x: Two, three an infinity of. An enclosure of. A maze

of.
y: Empty. As far as the eye can see. With visibility

limited due to the sun’s glare. Foggy. Blocked by
wire-mesh fence. Radioactive. Distorted by wide-
angle lens.

z: An island. City. Superhighway cloverleaf. McDon-
ald’s.
[. . .]

Eco’s theoretical works assume a rationalist and scepticist position
within European semiotics and structuralism, rejecting ontological
concepts of structure like those of Lévi-Strauss. In the same spirit,
this parody pokes fun at an ontologization of structure. It also disman-
tles the predictable elements and clichés of 1960s/70s European “au-
teur cinema” with its perpetuation of the romanticist author-genius.
When Eco wrote the text in 1972, he couldn’t foresee that a very sim-
ilar recipe was to be used, twenty years later, in the commercial soft-
ware Plots Unlimited, a PC program for screenwriters which generates
plot lines out of an internal database of plot elements.39 Since Plots
Unlimited was published as a book with cross-referenced numbered
paragraphs, its algorithm is transparent; it’s the same combinatory-
morphological formula of Llull, Harsdörffer, Propp and Eco, using
only a more elaborate set of data elements. With its title alone, Plots
Unlimited puts itself into the tradition of encyclopedic combinatory
poetics, but does so as a commercial and pragmatic industrial tool.
It is naive, and not sarcastic like Eco’s combinatorics. That, though,
does not change its implication that much of contemporary movies
and television soap operas might be based on its formulas, product
of the Plots Unlimited matrix, so-to-speak. (The program is in fact a
popular tool among screenwriters.) Much of popular culture could be
machine products in a more literal sense than even Frankfurt School

38Umberto Eco. Misreadings. Harvest, San Diego, 1993. [32], p. 145-155
39Tom Sawyer and Arthur David Weingarten. Plots Unlimited. Ashleywilde,

Malibu, 1994. [88]

AUTHORSHIP AND SUBJECTIVITY 83

sociologists Adorno and Horkheimer imagined when they coined the
term “culture industry” to describe Hollywood in the 1940s.40

Authorship and subjectivity

Cornelia Sollfrank’s Net.art Generators. Perhaps the most con-
sequent, if ironic, project of industrializing art was Andy Warhol’s
“factory” art. It industrialized its production, aesthetics and even the
identity of the artist: Warhol’s art was collectively and industrially
produced, used industrial mass media images as its material, and fac-
tory members with silver wigs appeared as Andy Warhol for public
lectures. Through its seriality, his work resembles machine-generated
art and later proved to be ideal source material of artistic computa-
tions. In 1997, artist Cornelia Sollfrank developed, in collaboration
with a number of programmers—Ryan Johnston, Luka Frelih, Bar-
bara Thoens, Ralf Prehn, Richard Leopold—, a series of Net.art Gener-
ators, web-based software programs that retrieve websites according
to user-entered search terms, reassembling them as digital collages.
Sollfrank was not interested in an autonomous generative art, but
in the political and philosophical issues the net.art generators create.
She and her programmers, for example, did not anticipate that the
generators would create endless variations of Andy Warhol’s flower
pictures (figure 3)—which in turn are based on a botanical photo-
graph by American photographer Patricia Caulfield from 1962. Next
to the many unauthorized variations of the Warhol flowers circulating
as postcards and poster prints, the computer-modified flowers created
unforeseen questions of authorship and originality. No dubious “artifi-
cial intelligence” (see p. 106) was necessary to create these issues. It
was sufficient that the artwork was transformed from a solid entity to
an automatic process. Moreover, it was designed by multiple people
and working on arbitrary input data. As a result, an exhibition of Soll-
frank’s net.art generators and their Warhol variations was cancelled
by the organizers out of fear of being sued for copyright violation.

What Tzara’s Dadaist poem puts into ironic terms, the “charming
sensibility” or subjectivity of the artist who creates a work according
to an algorithm, is at the center of Sollfrank’s philosophical and legal
reflections. Who exactly is the creator of a Warhol flower variation
computed by the net.art generators? Caulfield as their original pho-
tographer, Warhol as their first artistic adopter, Sollfrank as the artist

40Theodor W. Adorno and Max Horkheimer. Dialectic of Enlightenment. Verso,
London, 1979 (1947). [1]

84 3. COMPUTATION AS FRAGMENTATION

FIGURE 3. Variations of Andy Warhol’s Flowers created
by a Net.art generator

who created the concept of the net.art generators, the programmers
who technically designed and implemented them, the users of the
net.art generator, or the running program itself?

Conventional software for artists still sells the idea of the artist as
an autonomous creator who works with the aid of, but isn’t replaced
by, algorithms. Artistic generators like those of Sollfrank reverse the
model. They redefine authorship as the artistic design of an algorith-
mic process and, once this process is set into motion, the observation
and reflection of its effects. The industrial nature of its results puts
into question traditional categories of authorship, originality and ge-
nius. This approach builds and expands on the questions and provo-
cations Tzara’s Dada poem instigated. Programmer Richard Leopold
who wrote one of Sollfrank’s generators credits Dada as its main in-
spiration and calls the generated pages “Dada content” (but employs
Markov chains instead of permutation as the generative algorithm).

What sets apart Sollfrank’s generator from Tzara’s poem however
is that it explores its philosophical, aesthetic, legal and political impli-
cations in a more rigorous and systematic way. The idea that artists
turn into designers and philosophical explorers of computations, pay-
ing only secondary attention to the output of the process per se, con-
tradicts and subverts the industrial logic of the artistic software tool.
Even Plots Unlimited, a rare example of computational-generative po-
etics within a commercial software package, still clings to the myth
of being a transparent “aid” to the artist. Its advertising literally says
that “with Plots Unlimited you’ll develop your own original material

AUTHORSHIP AND SUBJECTIVITY 85

[. . .]—stories that sell [emphasis as in the original text].”41 Other
computer programs for artists disguise themselves as mere tools in
the hands of artists in more subtle ways. Word processors, graphics
editors, desktop publishing and musical composition software are all
based on two cultural premises:

(1) To emulate, in look and feel, analog tools—typewriters,
paint brushes, layout desks, scores and pianola rolls;

(2) To pass themselves off as “transparent” tools, i.e. technology
that obeys the user.

The latter is a fiction to the degree that those tools create their
own aesthetics and have their own implied politics.

Software involves interface paradigms with encoded cultural pre-
conceptions of what, for example, a “document,” “writing,” “design-
ing” is. It has embedded concepts of the order of things, of commu-
nication and workflows. To this extent, software controls its users.
Yet it sells the illusion that the user is fully in charge. Since the early
1990s, pop cultural graphic design has largely been driven by short-
lived fashionable gimmicks and plug-ins in programs like . The whole
musical genre of bootleg pop remixes would not exist without the pro-
grams Acid by Sonic Foundry and Traktor by Native Instruments. Even
these programs maintain the fiction of transparency and user control,
excluding algorithms that do not just aid, but actually generate work.
Among the few exceptions are Plots Unlimited and Band-in-a-Box, a
program that automatically creates musical arrangements.

Signwave Auto-Illustrator. The taboo of “transparent”
software—to not openly interfere with the artist—is systemati-
cally addressed and subverted in Adrian Ward’s computer program
Signwave Auto-Illustrator.42 It transforms vector graphics software
into a generative program with an agenda of its own, or rather, of its
programmer who codes his subjectivity into algorithms. With a user
interface that precisely mimicks the commercial graphics program
Adobe Illustrator, Auto-Illustrator implements, for example, a text
tool that writes its own, randomly generated texts. Other functions
turn artwork into “instant Bauhaus,” leave “bugs” that wander
around in the illustration, or render circles as smilies. However, the
program is functional. It generates proper graphics files and has
been practically employed for the graphic design of flyers and record

41Tom Sawyer and Arthur David Weingarten. Plots Unlimited. Ashleywilde,
Malibu, 1994. [88], cover text

42http://www.signwave.co.uk

http://www.signwave.co.uk

86 3. COMPUTATION AS FRAGMENTATION

covers. Auto-Illustrator combines encyclopedism and fragmentation
as anticipated by Lullism and Dadaism respectively. They do not
contradict, but complement each other in the program. In the many
years of its development since 2000, Auto-Illustrator has acquired an
encyclopedic wealth of features, similar to commercial software that,
incorporating more and more functions, strives to be the ultimate
tool for its purpose. Autor-Illustrator openly renders the same totality
absurd by accumulating eccentricities and personal fancies.

FIGURE 4. Random text tool of Auto-Illustrator

Algorithms as subjective expression were not conceived of in clas-
sical computational poetics. Both occult and scientific computations,
be it magic, Kabbalah, encyclopedism or algorithmic calculus, rely
on the idea that computation expresses a higher objective order; be
it divine law, or the laws of logic and mathematics. It’s hardly sur-
prising that computation often oscillated between the occult and sci-
entific poles, blurring its boundaries: from Pythagorean mathemat-
ics to eventually metaphysical computations such as those of Karl-
heinz Stockhausen and John Cage. Nevertheless, as the “semantics”
of formal languages, i.e. the choice of their cultural denominators
like Llull’s alphabetum indicates, computations were never able to

AUTHORSHIP AND SUBJECTIVITY 87

do without superimposed meaning, inscribed subjectivity, embedded
metaphors.

Since the 1970s, the field of “generative art” relies on the same
illusion of objectivity through computation. The most comprehensive
theoretical foundation for this field is provided by Max Bense’s writ-
ings. Even today, media theory remains centered around and preoc-
cupied with the idea of an anti-subjective, post-human autonomy of
machine processes. The roots of this media theory prominently lie in
McLuhan’s statement that the medium is the message—i.e. the tech-
nology itself bears the meaning instead of being its neutral purveyor—
and Heidegger’s philosophy of matter and technology. These theories
neglect that the machine processes were designed by humans in the
first place and can be seen on the contrary as embedding subjectiv-
ity into formulas, processes and hardware. When Cornelia Sollfrank
states that “a clever artist makes the machine do the work,” it still
implies that the artist makes it work in the first place.43 Poiesis, mak-
ing, becomes a second-order poeisis of making something that makes
something else. So poetry, making, turns into poetics, the making of
making. When making turns into meta-making, subjectivity simply
shifts to a second order position, residing in the formula instead of
the product. This fact is being repeatedly ignored by critical observers
whose perspective remains fixated on the product and who wrongly
conclude, in a fallacy reminiscent of Plato’s cave, that technology has
done away with the subject behind the work.

Calvino’s lecture on Cybernetics and Ghosts ends its theory about
language and poetry as a “combination game” with the speculation
that one day, the machine might be able to defy its own rules. This
utopian hope has been, throughout the history of arts and computing,
frustrated again and again (see chapter 4). It is an ultimately mag-
ical hope: That computing may one day transcend formalisms, and
thereby its own technical grounds and limitations, in a moment of on-
tological chance similar to that of a die displaying the number 7. The
same utopian hope drives artificial intelligence research, artificial life
research and “virtual reality” computing. It also underlies the expec-
tation of more “humane,” “fuzzy” computer interfaces which began
with the invention of the graphical user interface at Xerox PARC and
its popularization with the Apple Macintosh.—The “Humane Inter-
face” was the last, unfinished software development project of Macin-
tosh co-creator Jef Raskin before his death in 2005.—The same hopes

43Cornelia Sollfrank, editor. net.art generator. Verlag für moderne Kunst, Nürn-
berg, 2004. [94]

88 3. COMPUTATION AS FRAGMENTATION

and expectations drove the mainstream of digital “media art” and me-
dia theory in the 1990s. More critical artistic works, notably those of
Jodi and I/O/D (see p. 117 and 95) next to Sollfrank’s and Ward’s,
have questioned these utopias and contrasted them with the criticial
insight that

• computation remains, technically, a formalism;
• contrary to the assumptions of “artificial intelligence,” “vir-

tual reality” and company, semantics can be had, and al-
ready exists, even without transcending formalisms or mak-
ing them complex.

• formalisms, on the contrary, have a cultural semantics of
their own, even on the most primitive and basic level. With
a cultural semantics, there inevitably is an aesthetics, subjec-
tivity and politics in computing.

Pataphysics and Oulipo

Alfred Jarry and the Collège de Pataphysique. The insight that
even the most simple formalism has a cultural impact resolves the old
conflict between computational poetics as higher-order, metaphysical
or scientific objectivity on the one side and subjectivist aesthetics on
the other. Since Jonathan Swift, empirical and aesthetic thinkers op-
posed computation precisely on those premises. Romantic technology,
such as Surrealist games, Situationist and computational psychogeog-
raphy, is another model of resolving the opposites. The contradic-
tion between “objective” science and eccentric subjectivism however
is most comprehensively subverted, through a simple clashing or “dis-
cordia concors” of the two poles, in “mad” or “poetic science.” Pat-
aphysics was coined by its inventor, 19th century absurdist French
dramatist and novelist Alfred Jarry as a “science of imaginary so-
lutions.” His 1898 novel Dr. Faustroll defines pataphysics as the
“science that added to metaphysics, either in itself or outside itself,
and extend as far beyond metaphysics as the latter extends beyond
physics.”44 With this humorous foundation, pataphysics is, factually,
a poetic science. Unlike previous poetic sciences and epistemologies
such those of Novalis and Mallarmé, it does not take refuge in older
metaphysical and theosophical paradigms of macrocosmic and micro-
cosmic analogy. It is a poetic science that may, as Jarry’s novel shows,
be founded on empirical absurdism, but in general exists outside the
categories of rationalist physics and theosophical metaphysics.

44Alfred Jarry. Exploits and Opinions of Dr. Faustroll, Pataphysician. Exact
Change, Berkeley, 1996 (1911). [51]

PATAPHYSICS AND OULIPO 89

Founded in 1949 by among others Raymond Queneau, Michel
Leiris and Boris Vian, the Collège de Pataphysique continued a Parisian-
French avant-garde tradition at whose center previously had been
André Breton’s surrealist group. Queneau had been a member of sur-
realism for a short period, and satirized it in his novel Odile. His chief
fields of interests were mathematics and linguistics, and his day job
was to be the editor of encyclopedias in the Editions Pléiade. Per-
haps under his influence, the Collége de Pataphysique abandoned the
romanticist, communist-political and psychoanalytical pretext of sur-
realism. This legacy was continued instead by the Situationist Inter-
national which consequently criticized pataphysics as a “new religion
in the making.”45

Raymond Queneau’s 100,000 Billion Poems. In 1960, the Col-
lège de Pataphysique founded its own literary chapter, the Oulipo
(Ouvroir de littérature potentielle, “Workshop of Potential Litera-
ture"). Its core members were Raymond Queneau and mathematician
François Le Lionnais. Earlier in 1947, Queneau had spelled out his
own obsessions with mathematics, encyclopedism and street slang in
the Exercices de Style, a narrative of one short everyday scene in 99
different stylistic variations.46 In 1961, he extended this concept into
a computational poem, the 100,000 Billion Poems, a combinatory son-
net in ten variations.47 It was printed in a book whose lines were indi-
vidually sliced so that each line of poem could be turned like a page
and picked from ten alternatives. From ten alternatives for the twelve
sonnet lines, 1012 possible poem combinations result. Queneau sub-
verts the rigorous classicism of the sonnet form and its Alexandrine
meter through slang colloquialisms and through stereotypes sarcasti-
cally perpetuated in the poems. His preface credits the playful form
of the book to children’s books and disclaims any influence from sur-
realist games. The encyclopedism of his 100,000 billion poems is one
of a perpetuated proverbial, trivial wisdom. As a pataphysical work,
they contradict modern science through their combination of a Lullist
synthetic scholasticism with an empirism of proverbial clichés. Que-
neau remarks that

45This is the title of a text Asger Jorn published in the 6th issue of the Situ-
ationist International journal in 1961, Internationale Situationniste, editor. Inter-
nationale situationniste. Édition augmentée. Librairie Arthème Fayard, Paris, 1997
(1958-1969). [93].

46Raymond Queneau. Exercices de style. Gallimard, Paris, 1947. [81]
47Raymond Queneau. Cent mille milliards de poèmes. Gallimard, Paris, 1961.

[82]

90 3. COMPUTATION AS FRAGMENTATION

Dans un ordre plus abstrait, [. . .] l’Absolu, selon Jarry,
“les clichés sont l’armature.” (In an abstract order, [. . .]
clichés are, according to Jarry, “the armature of the ab-
solute.”)

On its first page, the book quotes Alan Turing, and an afterword
written by mathematician and pataphysician Le Lionnais cites one
of Georg Philipp Harsdörffer’s proteic poems along with the music
of John Cage and Stockhausen. Written in an ironic tone, it con-
tains a straightforward literary history of poetic and artistic computa-
tions between the lines. Furthermore, this afterword bears the title
“À propos de la littérature expérimentale” (Concerning Experimental
Literature).48 A forerunner of the Oulipo, created by Queneau and
Le Lionnais in 1959, was called “Séminaire de Littérature Expérimen-
tale” (Seminar of Experimental Literature). With the renaming of the
project into Oulipo, the concept of “experimental literature”—bearing
Le Lionnais’ formalist signature—was dropped, too.

Algorithmics as constraint and anti-formalism. Oulipo’s com-
bination of poetry and mathematics was neither strictly rationalist,
nor formalist. In an essay Potential Literature that appeared in 1964,
Queneau clarifies that

We are not are not concerned with experimental or
aleatory literature (as it is practiced, for example, by
Max Bense’s group in Stuttgart).49

Instead, Queneau explains, Oulipo is concerned with playing unpre-
tentious games. He charactericizes its poetics as “naive,” “craftsman-
like” and “amusing.” Along these lines, the poetic formalisms devel-
oped by Oulipo do not employ algorithms as an expansion of lan-
guage, but literally, and with darker humor, as “constraints.” This sets
Oulipo apart from the poetic Lullism of the 17th century, the cut-up
poetics of Burroughs/Gysin and the “artificial poetry” of the Stuttgart
School, all of which understood poetic computations as a means of
transcending the limitations of human creation and subjectivity.

Oulipo conceived of formalist poetics as a game-like artificial re-
striction on writing. As in a game where players have to find clever

48Raymond Queneau. Cent mille milliards de poèmes. Gallimard, Paris, 1961.
[82]

49Raymond Queneau. Potential literature. In: Warren F. Motte, editor. Oulipo.
A Primer of Potential Literature. University of Nebraska Press, Lincoln, London,
1986., pages 51–64. [83], p. 51

PATAPHYSICS AND OULIPO 91

solutions around the hurdles superimposed by the rules, the algorith-
mic restrictions had to be compensated by imagination. A whole set
of formalisms was created, such as lipogrammatic constraints which
prohibit the use of certain letters. Poetic imagination was challenged
to find a creative circumvention around the constraint. Oulipo mem-
ber Georges Perec, for example, wrote a bulky novel La Disparation
(English title: A Void) without a single occurence of the letter “e.”50

Oulipo’s alleged naivité was its sophistication. It neither bought
into the fallacy of scientific objectivity and machinic intelligence like
Bense’s group, nor did it regress into magical and theosophic meta-
physics like Burroughs and Gysin.

Whilst the culture and pompous rites of the Collège de Pata-
physique with its “satraps” and “magnificences” parodically reworked
the association of science and metaphysics, the parody of Swift’s acad-
emy of Lagado was practically made a live performance in the Oulipo.
It operates on the grounds of the Swiftian assumption that poetic
combinatorics are a fancy, but therefore have an artistic-fantastic po-
tential to be exploited and explored. At the same time, the formalist
constraints create a program for channeling artistic subjectivity, as op-
posed to—for example—the boundless romantic subjectivism of the
anti-formal, but pointless Lettrist sound poetry of Isidore Isou and
Maurice Lemaître from which the Situationist group emerged, too.

As opposed to Bense’s school with its rigorous constructivist mod-
ernism, Oulipo considered formalisms and computations neither a po-
etic end in themselves, nor a philosophical-ideological base. Oulipo
created a computational poetics as anti-computational poetics, us-
ing computational formalisms for the sole end of circumventing
them artistically. While Bense fought against semantics and imagi-
nation, Oulipo made it their game to let imagination fight against
self-imposed formalism and have it triumph in the end.

Still, Oulipo’s poetics did not really reflect computations as cul-
tural, and formalisms as loaded with meaning. Like others, it con-
ceives of culture, imagination and meaning as something foreign to
and struggling against formal rules. The slogan of 1990s digital art
collective I/O/D, “software is mind control, get some” is anticipated
in Oulipo only in its first half. Mind control is not embraced in Oulip-
ian poetics, but overcome in a factually romanticist move. It comes
as little surprise that Oulipo largely gave up on formal-algorithmic
methods after spinning off a computer programming division ALAMO
(“Atelier de Littérature Assisté par la Mathématique et l’ordinateur,”

50Georges Perec. A Void. HarperCollins, New York, 1994 1969. [75]

92 3. COMPUTATION AS FRAGMENTATION

“Laboratory of Mathematically and Computer-Assisted Literature”) in
1973 and the deaths of Raymond Queneau in 1977 and Georges
Perec in 1982. Nowadays, Oulipo focuses on improvisational, non-
computational games like the writing of poems in between two sub-
way stops.

Italo Calvino’s speculation on literature as computation also re-
flects upon Oulipo in which he had been a regular member. Cyber-
netics and Ghosts documents his exposure both to the structuralism
of Tel Quel and Oulipian poetics, synthesizing the former’s theoret-
ical, analytic understanding of language as a combinatorial system
with the latter’s practical, synthetic poetics.51 In a later contribution
to Oulipo proceedings, Calvino refers to his combinatorial prose com-
position as “anticombinatorics.”52 He distances himself from his ear-
lier theory that the poet could be replaced by a machine, and adopts
the Oulipo angle of the algorithm as a self-imposed constraint. With
his own personal background as a neorealist and fantastic novelist
who heavily drew from folk tales, his late prose works like Invisi-
ble Cities, The Castle of Crossed Destinies and “If on a Winter’s Night
a Traveller” combine rigorous Oulipian composition—comparable to
the novels of Georges Perec—with a fantastic imagination of space
rendering them (and in particular the novel Invisible Cities) another
para-manifestation of psychogeographical computing.

Abraham M. Moles’ computational aesthetics

Just as Oulipo’s anti-formalist thrust was less clear when the group
started off as a “seminar of experimental literature,” its literary work
was initially perceived as computational experimental literature. In
1962, physicist and philosopher Abraham M. Moles wrote a first
manifesto of permutational art (erstes manifest der permutationellen
kunst)53 which was published by Max Bense in Stuttgart. Later, in
1971, he expanded it into a book Art et Ordinateur (Art and Com-
puter).54 The “manifesto” combines structuralist and cybernetic the-
ory with examples of concrete poetry, Oulipo works and pre-modern

51Italo Calvino. Cybernetics and Ghosts. In The Uses of Literature, pages 3–27.
Harcourt, San Diego, 1982 (1967). [22]

52Italo Calvino. Prose and anticombinatorics. In: Warren F. Motte, editor.
Oulipo. A Primer of Potential Literature. University of Nebraska Press, Lincoln, Lon-
don, 1986., pages 143–152. [23]

53Abraham A. Moles. erstes manifest der permutationellen kunst. Stuttgart,
1963. [68]

54Abraham A. Moles. Art et Ordinateur. Casterman, Paris, 1981 (1971). [69]

SOURCE CODE POETRY 93

Lullist and proteic literature. In Moles’ definition, permutational
art is—unlike the Oulipian concepts of naive artisanships and self-
imposed constraints—“experimental to the highest degree,” striving
to “narrow down and exhaust the field of possibilities accessible
through a set of rules.” Along with Bense and his information aes-
thetics, he even conceives of perception as something that can be for-
mally described through technical information theory and functions
as a reverse combinatory process.

In a seeming rehash of 17th century encyclopedic Lullism, Moles
proposes to refound the arts on the basis of permutational combina-
torics. The disciplines his manifesto covers in brief individual sections
are mathematics, music, literature and poetry, mysticism, erotica and
painting. These disciplines are, as in Leibniz’ and Novalis’ mathesis,
reunited on the grounds of mathematical combinatorics. In tune with
Bense, Moles writes both a poetics and an aesthetics in which a near-
infinity of generative output likewise corresponds to a computational
decoding of aesthetic phenomena. It is a totalism that includes both
synthetic creation and analytical perception. In the attempt to map
all arts and thinking onto algorithmic processes, Moles’ theory resem-
bles artificial intelligence research and its project to formally describe
semantics as a higher complexity syntax. Moles’ program appears not
as rigorously totalist, however, because of its sketchy and highly spec-
ulative elaboration in this brief manifesto. In tune with Bense’s philos-
ophy and its grounding of aesthetics on technical information theory,
it conceives of “permutational art” as a “fundamentally anti-semantic
activity.” The manifesto is a historical document of cybernetics and its
attempt at a universal science of technology that investigates human-
machine interaction. Cybernetics largely faded out and was often
considered obsolete in the 1970s until many of its ideas—most im-
portantly the description of cultural processes in terms of technical
processes—resurfaced in the 1990s, in the guise of technical media
theory.

Source code poetry

One year after Moles’ manifesto, the 9th issue of the Situationist Inter-
national journal ran a polemic against Abraham Moles. Guy Debord
calls him upon to “médite sur la valeur anti-combinatoire du mot,”
“ponder the anti-combinatory value of a word.”55 The phrase is rem-
iniscent of Oulipo poetics and Calvino’s “anti-combinatorics.” Such

55Internationale Situationniste, editor. Internationale situationniste. Édition
augmentée. Librairie Arthème Fayard, Paris, 1997 (1958-1969). [93], p. 411

94 3. COMPUTATION AS FRAGMENTATION

overlaps actually existed. Noël Arnaud, member of the Collège de
Pataphysique since 1952 and co-founder of the Oulipo, was involved
also in the pre-situationist Cobra painters group and later, after the
schism between Northern European Situationists and Debord’s circle,
became co-editor with Jacqueline de Jong of the Situationist Times.
In 1968, Arnaud published a book Algol. The poems it contains are
based on the vocabulary of the Algol programming language trans-
lated into French. The idea of Algol poetry came from Le Lionnais’
first Oulipo manifesto from 1962. Still in the spirit of “experimen-
tal literature,” it proposed “forays [. . .] notably into the area of
special vocabulary (crows, foxes, dolphins; Algol computer language,
etc.).”56

For the first time, and unlike in classical computer-generated po-
etry like that of Theo Lutz and Brion Gysin, the programming lan-
guage source code was acknowledged as having a poetic quality of its
own. Arnaud’s Algol source code no longer generated poetry, but was
the poem itself. Program code ceased to be seen merely as a “trans-
parent” technical tool detached from the perceived art work, but as
an aesthetic object itself. For the first time, artistic programming was
not a means to another end. Computer programming languages ap-
pealed to the Oulipo as yet another formal constraint. In comparison
to standard human languages, all programming languages are dras-
tically limited in their vocabulary and syntax, Algol even more than
others. A “poor” language that limited a writer’s freedom, Algol was
yet another playground for Oulipo poets to overcome artificial con-
straints through imagination and cleverness.

This poetics highly resembles a “hacker” approach. Hacker
culture, which—according to its mainstream historifications and
legends—originated at MIT in practically the same years as the
Oulipo,57 had the very similar goal of appropriating technology in cre-
ative ways which could, if necessary, include clever circumvention of
superimposed barriers and limitations. So it is perhaps not surprising
that hacker culture re-invented the genre of programming language
poetry, but without knowing of its Oulipo precursors. In an internet
newsgroup posting of 1991, Larry Wall, creator of the Perl program-
ming language (itself a “hack” in its syntactical mixture of older Unix
scripting languages), left the message

56François Le Lionnais. Lipo: First manifesto. In: Warren F. Motte, editor.
Oulipo. A Primer of Potential Literature. University of Nebraska Press, Lincoln, Lon-
don, 1986., pages 26–28. [61], p. 27

57Steven Levy. Hackers. Project Gutenberg, Champaign, IL, 1986 (1984). [63]

JODI 95

Print STDOUT q
Just another Perl hacker
Unless $pring

. . . which is proper executable Perl code. After his example, a number
of Perl programmers wrote source code poems in Perl. They were
collected, still in the same year, in Sharon Hopkins’ paper Camels and
Needles: Computer Poetry Meets the Perl Programming Language.58 All
the poems included in the volume are “artisanship” as Oulipo had
advocated it. However, they are naive, non-ironic artisanship, being
quite conventional and stereotypical poems about love or nature, only
in the form of Perl source code or, the most cases, pseudo-code that
looks like Perl but can’t be machine-executed. It is poetry as a popular
social game similar to limericks or Haikus.

Jodi

Source code poetry was reinvented for a third time in the mid-1990s
net.art of Jodi. Jodi stands for Joan Heemskerk and Dirk Paesmans,
a Dutch-Belgian artist couple. They were part of a network of artists
who radically redefined digital art from so-called “interactive” high-
tech graphical simulations to ironic low-tech works that played with
bugs, incompatibilities and disruptions in software. Contrary to a
slick, visually immersive digital art which treated the computer as a
black box, Jodi aestheticize computers as self-immersed, often absurd
generators of contingent data streams. The work OSS, for example,
makes small browser windows which evade manual control pop up
and fly about, forcing the user to take down the computer in order
to regain control. The OSS desktop expands the misbehaving, uncon-
trollable user interface onto the entire Windows desktop. Yet Jodi’s
art does not tell an imaginary truth underneath the surfaces of soft-
ware user interfaces. Instead, it exposes the surrealism of formalisms.
A newer Jodi work for example simply uses a commercial car driv-
ing computer game, and lets the car make infinite, lawnmower-like
circles, with high speed and squeaking tires, in the front garden of
an American suburban family home. On http://www.jodi.org visi-
tors are confronted with code in the form of cryptic error messages,
blinking machine symbols and contigent tabular listings of numbers.
It is code which often simply refers to other code—an error mes-
sage for example linking to another error message linking to yet an-
other error message. But moreover it is code which is not what it

58Sharon Hopkins. Camels and Needles : Computer Poetry meets the Perl
Programming Language, 1991. www.wall.org/~sharon/plpaper.ps. [47]

http://www.jodi.org
www.wall.org/~sharon/plpaper.ps

96 3. COMPUTATION AS FRAGMENTATION

seems to be. The web site features fake software which in reality is
just animated graphics and blinking browser text. ‘Surgery/havoc”
http://wwwwwwwww.jodi.org/100cc/havoc/ looks like a jump’n’run
computer game with several zoom functions, but is actually a
clever arrangement of animated graphics files. Employing the same
means, BinHeX http://wwwwwwwww.jodi.org/100cc/hqx/i900.html
simulates system crashes and computer virus infection.

Next to their web site, Jodi began to use net cultural mailing lists
as their medium, bombarding them likewise with cryptic, repetitive
code messages such as the following:

Date: Tue, 25 Dec 2001 23:35:19 +0100
From: 7061 <404@jodi.org>
Subject: [P1] : [P1] Auto-Su(MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200

1 21:48:24(MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200
1 21:48:24mitted (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200

1 21:48:24: auto-g(MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6
200 1 21:48:24enerated (failure) Mime-(MMi6 2001 (MMi6 2001
21:48:24 +0100 (MMi6 200 1 21:48:24sion: 1.0 Subject:
Returned Resent-From: rspi Sta >> iBo f Ap k. >> FAQ istFAQ.shtml> >>
>> To u gu(MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200 1
21:48:24m> >> To sw ibook- >> dige shguy.com> >> Nee(MMi6 2001 (MMi6
2001 21:48:24 +0100 (MMi6 200 1 21:48:24d help o(MMi6 2001
(MMi6 2001 21:48:24 +0100 (MMi6 200 1 21:48:24(MMi6 2001
(MMi6 2001 >> ---------- >> Sm o >> ---------- >> Sm o >> ---------- >>
Sm o >> ---------- >> Sm o >> ---------- >> Sm o >> ---------- >> Sm o >>
---------- >> Sm o >> ---------- >> Sm o >> ---------- >> Sm o >>
---------- >> Sm o >> ---------- >> Sm o >> ---------- >> Sm o >>
---------- >> Sm o >> ---------- >> Sm o 21:48:24 +0100 (MMi6 200

1 21:48:24k- >> requ com> >> ---------- >> Sm o To Win A | >> ---
Cano iBook! | >> >> iBookPl ore. >> >> Road es, $20 >> Traveler >>

Cool tools.com> 01 21:48:24 +0100 (M Mi6 2001 21:48:24 +0100 (M Mi6
2001 21:48:24 +0100 (M Mi6 2001 21:48:24 +0100 (M Mi6 2001 21:48:24 +0100
(M Mi6 2001 2(MMi6 2001 21:48:24 +0100 (MMi6 200 1 21:48:24
+0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200 1
21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200
1 21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200

1 21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200
1 21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200

1 21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200
1 21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6

200 1 21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100
(MMi6 200 1 21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24
+0100 (MMi6 200 1 21:48:24 +0100 (MMi6 2001 (MMi6 2001
21:48:24 +0100 (MMi6 200 1 21:48:24 +0100 (MMi6 2001 (MMi6
2001 21:48:24 +0100 (MMi6 200 1 21:48:24 +0100 (MMi6 2001
(MMi6 2001 21:48:24 +0100 (MMi6 200 1 21:48:24 +0100 (MMi6
2001 (MMi6 2001 21:48:24 +0100 (MMi6 200 1 21:48:24 +0100
(MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200 1 21:48:24
+0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200 1
21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200

http://wwwwwwwww.jodi.org/100cc/havoc/
http://wwwwwwwww.jodi.org/100cc/hqx/i900.html

JODI 97

1 21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200
1 21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200

1 21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6 200
1 21:48:24 +0100 (MMi6 2001 (Mon the discussions between

Mrinmoy / Shubhodip (bluwregraseqr werMi6 2001 21:48:24 +0100 (MMi6 200
1 21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100 (MMi6

200 1 21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24 +0100
(MMi6 200 1 21:48:24 +0100 (MMi6 2001 (MMi6 2001 21:48:24

[...]

The above message appeared not in the E-Mail message body, but en-
tirely in the subject line, trying to provoke errors, crashes and con-
fusion in the distribution and display of the message. With such
interventions, Jodi tried to refashion net cultural discussion forums
from theoretical discussion forums about art and culture into practi-
cal artistic playgrounds. At the same time, their E-Mail art once more
reduced the technical complexity of digital art, in sharp contrast to
high tech museum installations. With their conflation of English ev-
eryday language, code fragments from programming languages, char-
acter encodings, markup languages and network protocol code, these
messages furthermore created uncertainty and paranoia among naive
readers who might think that the signs were malicious and contained
viral code. Consequently, the Jodi website was temporarily shut down
because its network provider believed that OSS was a computer virus.
This was the practical proof that Jodi’s artistic simulations of code in
the medium of code were efficacious. (More on on p. 112.)

As imagined viruses, the codes raised doubt about their origins.
All the more when a growing number of pseudonymous entities be-
gan sending out similar messages to mailing lists. Media theoretician
McKenzie Wark characterized those message as follows:

This might be mangled machine English, or perhaps an
English written by a machine programmed by someone
who speaks English as a second language, or someone
producing a simulation of some such.59

It also remained unclear to which degrees computation had been at
work in composing the messages. Just like it was doubtful whether
their symbols were plain English or machine code, it was doubtful
whether their originators were humans, computer programs, com-
puter programs filtering and modifying human language, or the op-
posite, humans filtering the output of computer programs. McKenzie

59McKenzie Wark. Essay: Codework. American Book Review, 22(6):1–5, Sep-
tember 2001. [100]

98 3. COMPUTATION AS FRAGMENTATION

Wark and artist Alan Sondheim later coined the term “codeworks” for
this kind of net.art.60 With its uncertain origins and bizarre human-
machine involvement, experimentation with artistic identity and sub-
jectivity remained its core characteristic.

1337 speech

Codeworks reflect the uncanny underbelly of network communica-
tion in an age where the Internet is accessed largely by graphical
browser and client programs, but with the constant awareness that
non-graphical codes are running underneath the system. In main-
stream computing, these codes revealed themselves only in error
messages or as “blue screens of death” when the operating system
crashes. Computer hackers had written source code poems and ty-
pograms with ASCII characters out of the aesthetic limitation of non-
graphical terminal and command line computing between the 1960s
and early 1990s. For the net.artists who worked in the age of the
web browser, these non-graphical constraints were voluntary and self-
imposed, very much like Oulipo’s constraints. Since ASCII typograms
were hacker circumventions of technical limitations, they had an aura
of subversion, and were hybridized with slang.

A particular slang developed in the subculture of “crackers,” hack-
ers who break into network computers or crack the copy-protecting
schemes of computer games. It replaces letters with numbers, for
example “e” with “3” and “t” with “7” (because of their typographic
similarity), so that a “1337 [leet] hax0r” becomes code speech for
“elite hacker.” These substitutions originated in about the same time
as similar codes in hip hop culture where, for example, “2pac” stood
for rapper Tupac Shakur. Writing in 1337 slang, among others on
websites defaced by crackers, became digital graffiti. Since the let-
ter substitutions can be automated, there also exists simple text filter
software—like the Unix filter “b1ff”—which transforms standard Eng-
lish writing into 733t speech:

SINCE THE LETTUR SUBSTITUSHUNZ CAN BE
AU2M8D. THURE ALSO EXISTZ SIMPLE TEXT F1LTUR
SOFTWARE—LIKE THE THE MANEFRA1M O/Z
F1LTUR B1FF—WH1CH TRANS4MZ STANDARD
ENGLISH WR1T1NG IN2 733T SPEECH.

Clearly, the cracker slang and graffiti were a source of inspiration
for net artists like Jodi. When net cultural mailing lists started to

60Alan Sondheim. Introduction: Codework. American Book Review, 22(6):1–4,
September 2001. [95]

CODEWORK 99

filter out their disruptive codework around 1997, Jodi co-founded a
mailing list 7-11 which had no editorial restraints of artistic E-Mail
experimentation, and even let through all commercial spam. On this
and other lists, artists like mez (Mary Anne Breeze) and Alan Sond-
heim transformed the former disruption aesthetic into new hybrid
computer-English poetic vocabularies and languages. The result were
works like the “Exe.cut[up]able statements” described in the very be-
ginning of this paper.

Codework

In the early 1970s, Alan Sondheim began to work with programming
code as material in the larger context of conceptual art. He exper-
imented with Unix command line code in experimental writing as
early as in the 1980s, and collaborated with younger net.artists since
the 1990s. One of his codeworks reads as follows:
From: Alan Sondheim <sondheim@panix.com>
To: _arc.hive_@lm.va.com.au
Date: Thu, 9 Jan 2003 17:17:20 -0500 (EST)

sleeping and running zombies through bodies

CPU states: 4.7% user, 5.8% system, 0.0% nice, 89.4% idle:36 processes:
35 sleeping, 1 running, 0 zombie, 0 stopped:1m 4:20pm up 8 min, 1 user,
load average: 0.54, 0.26, 0.11: :Mem: 38664K av, 35084K used, 3580K free,
14956K shrd, 15080K buff Write vaginas through my CPU states: 4.7% user,
5.8% system, 0.0% nice, 89.4% idle! CPU states: 4.7% user, 5.8% system,
0.0% nice, 89.4% idle:36 processes: 35 sleeping, 1 running, 0 zombie, 0
stopped:1m 4:20pm up 8 min, 1 user, load average: 0.54, 0.26, 0.11: :Mem:
38664K av, 35084K used, 3580K free, 14956K shrd, 15080K buff Write vaginas
through my CPU states: 4.7% user, 5.8% system, 0.0% nice, 89.4% idle!
load average: 0.54, 0.26, 0.11: :Mem: 38664K av, 35084K used, 3580K
free,:35 sleeping, 1 running, 0 zombie, 0 stopped:1m 4:20pm up 8 min, 1
user,:CPU states: 4.7% user, 5.8% system, 0.0% nice, 89.4% idle:36
processes::Write vaginas through my CPU states: 4.7% user, 5.8% system,
0.0% nice,:89.4% idle! CPU states: 4.7% user, 5.8% system, 0.0% nice,
89.4% idle:36 processes: is sufficiently well-inscribed. - I consider the
following again, your CPU states: 4.7% user, 5.8% system, 0.0% nice,
89.4% idle:36 processes: ... enunciation inscribes me upon your token! CPU
states: 4.7% user, 5.8% system, 0.0% nice, 89.4% idle:36 processes:, load
average: 0.54, 0.26, 0.11: :Mem: 38664K av, 35084K used, 3580K free,
remembers my chisel My load average: 0.54, 0.26, 0.11: :Mem: 38664K av,
35084K used, 3580K is your language... load average: 0.54, 0.26, 0.11:
:Mem: 38664K av, 35084K used, 3580K free, calls forth births inscription,
hungered, making things. upon the time, load average: 0.54, 0.26, 0.11:
:Mem: 38664K av, 35084K used, 3580K free, is here, 00], 35 sleeping, 1
running, 0 zombie, 0 stopped:1m 4:20pm up 8 min, 1 user,? ... inscription

100 3. COMPUTATION AS FRAGMENTATION

is stopped:1m 4:20pm up 8 min, 1 user, load average: 0.54, 0.26, 0.11:
:Mem: on black stone, it’s inscription? Are you satisfied with your load
average: 0.54, 0.26, 0.11: :Mem: 38664K av, 35084K used, 3580K free,?
load average: 0.54, 0.26, 0.11: :Mem: 38664K av, 35084K used, 3580K free,
1086 is the perfect proclamation. CPU states: 4.7% user, 5.8% system,
0.0% nice, 89.4% idle:36 processes: 35 sleeping, 1 running, 0 zombie, 0
stopped:1m 4:20pm up 8 min, 1 user, load average: 0.54, 0.26, 0.11: :Mem:
38664K av, 35084K used, 3580K free, 14956K shrd, 15080K buff Write vaginas
through my CPU states: 4.7% user, 5.8% system, 0.0% nice, 89.4% idle!
load average: 0.54, 0.26, 0.11: :Mem: 38664K av, 35084K used, 3580K
free,:35 sleeping, 1 running, 0 zombie, 0 stopped:1m 4:20pm up 8 min, 1
user,:CPU states: 4.7% user, 5.8% system, 0.0% nice, 89.4% idle:36
processes::Write vaginas through my CPU states: 4.7% user, 5.8% system,
0.0% nice,:89.4% idle! load average: 0.54, 0.26, 0.11: :Mem: 38664K av,
35084K used, 3580K free,:35 sleeping, 1 running, 0 zombie, 0 stopped:1m
4:20pm up 8 min, 1 user,:CPU states: 4.7% user, 5.8% system, 0.0% nice,
89.4% idle:36 processes::free,:35 sleeping, 1 running, 0 zombie, 0
stopped:1m 4:20pm up 8 min, 1:38664K av, 35084K used, 3580K free, 14956K
shrd, 15080K buff Write vaginas Your enunciation names my stopped:1m
4:20pm up 8 min, 1 user, load average: 0.54, 0.26, 0.11: :Mem: !

The work is based on the output of the Unix system command “top”
which displays a list of running processes, memory and central pro-
cessor load. “Zombie” is a technical Unix term for a program process
that can no longer be terminated with the “kill” command. Sond-
heim’s text takes these descriptors—or “semantics,” as computer sci-
ence would call it—literally. He reads the output of the program as
a physical inscription of bodies, as performance art and a subjective
utterance in the medium of computer software. It gets reformatted
and partially rewritten, in an operation that blurs the boundaries of
machine and human, syntax and semantics, with words and phrases
mapping bodies and sexuality. Subject and object, syntax and seman-
tics, formalism and culture become inseparably entangled, crisscross-
ing and writing over each other.

This is not simply a poetic metaphorization because the technical
apparatus of writing becomes a part of the text. There is a feedback
of textual input, output and processing inside the text and within the
medium of code. This conflation of source code, data and processing
could be called recursive, since recursion means that a process pro-
cesses itself. Yet it is not a formal-mathematically “clean” recursion.
The text is not a result of a pure computation, but involves human
editing, rendering the recursion a simulation, rhetorical, reflexive.

The “codeworks” by Jodi, mez, Alan Sondheim and other artists
manifest a most radical understanding of formalisms as meaning-
ful. That their codeworks rarely execute properly, being imaginary
code and conflations of machine code with human conversational

CODEWORK 101

language, reflects this understanding. The codeworks appropriate
languages that were designed to be asemantic—programming lan-
guages, protocol code, shell commands—to unveil and elaborate their
metaphorical and physical inscriptions, implications, and engendered
meanings lurking between the lines. In other words, they do not just
reflect words made flesh, but words and codes being flesh.

CHAPTER 4

Automatisms and Their Constraints

Artificial Intelligence

From magic to codeworks, three cultural modes of computation have
evolved:

(1) Instruction code as synthesis.
A small amount of code generates, from a fixed set of

data inscribed into that code, a large body of output. The
principle applies to all combinatorics from Llull to generative
art. In this kind of computation, the code itself is exempt
from the algorithmic process. It triggers the process, but is
not being processed itself. The result of the synthetic process
is often imagined to be infinite, total and exhaustive.

(2) Instruction code as analysis.
Either

(a) In a reciprocal operation to synthetic combinatorics, a
large body of information is being reduced to a smaller
amount of source code. Prominent examples are the
kabbalistic condensation of the Torah to the letters
JHWE and the reduction of language to a combinatorial
set or transformational grammar in structuralist and
Chomskyan linguistics.

(b) Alternatively, the code does not synthesize a fixed set
of data into a whole, but takes apart arbitrary input.
This the principle of Tzara’s Dadaist poem, cut-ups and
Markov chains. The resulting work is not conceived
as exhaustive or total, but contingent and collage-like.
The instruction code however exists outside that conti-
gency. It has to remain intact, and not take itself apart,
in order to be operational. The strict separation of
static instructions and contingent data contradicts the
assumption of a “chance operation.” This is the para-
dox of all aleatory art, including concrete poetry and
the music of John Cage.

(3) Self-processing instruction code

103

104 4. AUTOMATISMS AND THEIR CONSTRAINTS

(a) as formal recursion; the instruction goes into strange
loops by processing itself. It modulates or modifies it-
self in that process. This is a standard procedure in pro-
gramming languages such as Lisp. The classical Greek
paradox of the lying Cretan (“all Cretans are liars. I
am a Cretan”) is the oldest known example of a logical
recursion in language.

(b) as informal conflation.
Unlike formal recursions, codework processes instruc-
tion codes semanticly since it understands formalisms
as meaningful, loaded with metaphors, physical and
subjective inscriptions. The historical precondition of
this poetics is an understanding, and availability, of
computational instruction codes as material. Code is
no longer synthesized and created from sratch in clean-
room laboratories, but abundantly flows through com-
puters and networks. It is understood as unclean, messy,
strangely meaningful, a trigger not only of mathemati-
cal processes, but imagination and phantasms.
These imaginations and phantasms exist in the syn-
thetic and analytical poetics of computational instruc-
tion code as well, but it is either—as in Lullism for
example—not reflected upon as imaginative, or is so
reflected outside the medium of computational code it-
self, such as in the descriptive realist prose of Swift and
Borges.

Except for synthetic combinatorics, the question implicit in the above
approaches is no longer whether algorithms can replace human cre-
ativity and cognition. Instead, they reflect computation as a cultural
phenomenon of its own. The connection between computations and
human subjectivity, imagination, politics and economy is therefore
intricate, contradictory and rich with metaphors. That computation
could simply replace human creation by mapping human cognition
one-to-one onto algorithms appears as naive, or only an idea about
the cultural impact of computation. Nevertheless, the idea did not
die out with encyclopedic Lullism and its Swiftian satire, but was
reinvented in the 20th century as artificial intelligence. In linguistic-
cognitive terms, the project of A.I. research is to prove that such a
thing as “semantics” does not exist and is just a higher-order syntax.
So far, A.I. has failed to deliver the practical proof. Instead, outside of
its stated goal it has produced interesting technological and cultural

ATHANASIUS KIRCHER’S BOX 105

by-products for fifty years, such as the programming language Lisp,
or the GNU project that was initiated in the MIT artificial intelligence
lab.

Athanasius Kircher’s box

The idea of automating language, art and cognitive reasoning existed
already in 17th century Lullism. Its computational device, both in the
form of algorithms and hardware, were orders of magnitude more
primitive. In 1674, three years after his permutational sonnet, Quiri-
nus Kuhlmann published his correspondence with Athanasius Kircher
in a book epistolae duae.1 It documents an early debate about auto-
matically generated art and its cognitive limitations. In his letters,
Kuhlmann rejects a purely technical application of Llull’s combina-
torics, claiming that “knowing Lullus does not mean to have knowl-
edge in the alphabetum of his Ars in order to build syllogisms with it,
but to grasp the true power from the universal book of nature that is
hidden underneath it, and apply it to everything.”

FIGURE 1. Athanasius Kircher’s design of a music com-
position machine

1Quirinus Kuhlmann. Epistolae duae. Lotho de Haes, Amsterdam, 1674. [58]

106 4. AUTOMATISMS AND THEIR CONSTRAINTS

Kircher rejects this viewpoint on theological grounds, warning
Kuhlmann in drastic words that he might cross the line of heresy. His
own application of Lullism, Kircher writes, forays more into techni-
cal realms, including a music generation machine; a device described
also in his book Musurgia Universalis and of which a graphical re-
production exists. Along with the musicology of early 17th century
Lullist Marin Mersenne, Kircher’s Musurgia is often cited as a precur-
sor of contemporary computer-generated music.

Kuhlmann’s insistence on a theosophical “book of nature” under-
neath Lullist computation might seem like traditional metaphysical
thinking, but his critique of automatically generated arts is hands-on:
He rejects the idea of a machine, or “box” (“cista”) as Kircher calls
it, that generates poetry, arguing that such a machine could indeed
be built, but it would not produce good artistic results. One could
teach, Kuhlmann writes, every little boy verse composition through
simple formal rules and tables of elements (“paucis tabellis”). The
result however would be versifications, not poetry (“sed versûs, non
poëma”). Unlike artists before and after him, Kuhlmann does not con-
sider algorithmic composition and artistic subjectivity contradictory.
He reconciled what he saw as the macrocosmic order in computation
and his own microcosmic artistic subjectivity by eventually fashion-
ing himself into a prophet and messiah. This way, he took the con-
cept of the artistic genius to its ultimate extreme even before it was
nominally invented in the 18th century. The rhetorical “ingenium”
as it had been laid out in 17th century rhetoric from Sarbiewski to
Morhof was a pretext of this development. With its odd condition
of being at once (a) technical and (b) human subjective wit, it later
branched into “genius” and “engineer” and paved the way for all con-
troversies over art and the extent to which it could be formalized and
automated. It is an issue which applies not only to art, but to any
meaningful, semantic phenomenon, including language and culture.
The debate between Kuhlmann and Kircher therefore was a first con-
troversy over artificial intelligence, and the potentials and limitations
of machine cognition.

John Searle’s Chinese Room

Three hundred years later, in 1980, Kircher’s and Kuhlmann’s debate
was partially rehashed in a dispute between language philosopher
John R. Searle and various artificial intelligence researchers. In his

JOHN SEARLE’S CHINESE ROOM 107

paper Mind, brains, and programs, Searle sketches a thought experi-
ment of artificial language cognition.2 A person who does not under-
stand Chinese is enabled to communicate in Chinese solely by formal
instruction. The person sits in a closed room and is given questions
written in Chinese characters from outside (figure 2). He transforms
the Chinese characters into other Chinese characters solely through
the completely formal, step-by-step guidance of an English rule book.
Thanks to the precise transformation rules, the results are flawless
Chinese replies to the Chinese questions. Searle argues that the per-
son, although people outside would think it spoke Chinese perfectly,
would not understand the language at all.

FIGURE 2. Illustration of Searle’s Chinese Room from
http://www.macrovu.com/CCTMap4ChineseRm.html

When Searle’s paper first appeared in the journal The Behavioural
and Brain Sciences, it was accompanied by a number of critical re-
sponses and attempts at refutation by A.I. scholars. From a “hard”
A.I. standpoint as Searle calls it, one could argue that human cog-
nition is no more than higher-order formal computation and syntax
manipulation, only that humans don’t have an understanding and
self-awareness of the formal processing in the brain. Another counter-
argument is that the resulting whole consisting of the chamber, the in-
mate and the book should be considered intelligent, i.e. the entire sys-
tem and not its single components such as the room’s inmate. Perhaps

2John R. Searle. Minds, brains, and programs. The Behavioral and Brain Sci-
ences, 3:417–456, 1980. [91]

http://www.macrovu.com/CCTMap4ChineseRm.html

108 4. AUTOMATISMS AND THEIR CONSTRAINTS

the strongest critique is that Searle’s argument is entirely ontological
and metaphysical because it does not matter whether the system has
an “understanding” as long as it perfectly acts as if it would under-
stand. When the simulation of cognition is as good as cognition itself,
it does not matter—or is just a metaphysical question— whether it’s
a simulation or not. This topic has been reflected in many Science
Fiction novels, most popular is Philip K. Dick’s Do Androids Dream of
Electric Sheep from 1968 in its adaption as the Hollywood film Blade
Runner.

Remarkably, both Searle and his A.I. research critics assume that
something was technologically feasible which, in its time and still to-
day, is science fiction. There simply exists no rule book—in other
words: no algorithm—for transforming Chinese questions into Chi-
nese answers. The proof that such a book could be written solely
on the basis of mathematical computation, or formal logic, is still
outstanding. Both A.I. critics and A.I. adherents assume in pure spec-
ulations that the technology is capable of what they describe.

The whole field of “artificial intelligence” is somewhat odd in that
there exists no hard scientific notion of intelligence yet in the first
place. So there is no clearly defined objective of the research. If
intelligence, for example, is simply defined as logical-mathematical
calculation, then of course computers are intelligent machines. If
intelligence is defined through the ability of forming opinions, then a
thermostat is “intelligent” having the opinion that a room is too cold
or too hot (to use an original example from the Searle debate).

A.I. contradicts basic principles of modern empirical science. Re-
search is supposed to be based on observation and heuristics, not su-
perimposed notions or categories which are not even clearly defined
themselves. Unlike empirical science, A.I. as exemplified by the Tur-
ing test, knows its results including the proof beforehand. It searches
for a process that fits the predefined result and proof, forcing reality
to fit the result instead of having the result fit reality. This makes A.I.
research an heir of medieval scholastic science and brings up very sim-
ilar philosophical issues to those of Lullism as criticized by Kuhlmann
and Swift.

The debate over Searle’s Chinese room reveals how the question
of whether computational hardware and software is capable of cog-
nition is completely ruled by a cultural imagination and phantasm—
both on behalf of A.I. research and of Searle—of what mathematical
computations might be capable of. The debate is like a hypothetical

GEORGES PEREC’S MASCHINE 109

argument over the environmental impact of perpetuum mobiles, in-
stigated by perpetuum mobile research and its entirely speculative
promises.

Georges Perec’s Maschine

Commissioned in 1968 by Saarländischer Rundfunk in Germany,
Oulipo poet Georges Perec wrote a radio play Die Maschine (The Ma-
chine), in collaboration with his German translator Eugen Helmlé.
The play simulates, as the foreword explains, a computer “systemat-
ically analyzing and dissecting Johann Wolfgang von Goethe’s poem
‘The Wanderer’s Night Song’.” In the English translation contained
in Perec’s script, Goethe’s short poem (a classic of German literature
taught at every high school) reads as follows:

over every hill
is repose
in the trees, you feel
scarcely goes
the stir of a breeze.
hushed birds in the forest are nesting.
wait, you’ll be resting
soon too like these.3

Perec’s imaginary computer consists of three “memory” units and one
“control” unit. In the radio play, they appear as different speakers (fig-
ure 3). The control unit commands the performance of certain compu-
tations on Goethe’s text, for example, on the structure of rhyme, the
number of letters, or the average of letters per verse. It commands
word by word readings, readings of groups of two words and further
transformations of the text which implement practically all the poetic
algorithms the Oulipo invented or reinstated from pre-modern poet-
ics. The three memory units recite the different results of the text
transformations according to the control unit’s instructions. Taking
up eighty pages in the manuscript, the computations show a pata-
physical machine at work. They render themselves absurd in creating
more and more pointless variations of Goethe’s poem. In the end, the
machine performs synonym lookups and international translations of
“rest” into “silence” and “peace,” and exhausts itself in the process.
The words uttered by the three memory units are also spoken by the
control unit; the data overwrites the program code, and the system
crashes. The semantics of Goethe’s poem, with the instruction to

3ibid., p. 46

110 4. AUTOMATISMS AND THEIR CONSTRAINTS

“wait” and “find rest,” becomes the instruction code of the machine
eventually. The text which originally should be input data turns into
a program, overwriting the original program of the pataphysical ma-
chine. So it works just like an E-Mail virus. Such a virus, thought
to be only data for transmittance, actually executes on a computer
system as an algorithm, takes over control, and brings the infected
system to a grinding halt. Die Maschine is a tribute to Goethe’s poem
as a powerful text which makes all formal processing running amok
and fail because its semantics resist syntactical processing.

FIGURE 3. Manuscript of Perec’s radio play, with the
text of the three memory units and the control unit in
separate columns

Perec’s radio play is perhaps the first work of computational art
reflecting the limitations of computers and aestheticizes computer
crashes. It demonstrates, in a sometimes comic, sometimes painful
formal exercise, how the pure syntactical processing of language by
itself is poetically pointless, except as a cultural reflection of compu-
tation. It dramatizes, so-to-speak, the practical failure of Searle’s Chi-
nese room because the algorithmic rulebook does not work as adver-
tised. The poetics and artistic use of algorithmic processes therefore
does not lie in simulated language composition, but in a cultural re-
flection of computations as computations, with all their formal limita-
tions. This poetics was either not understood or not continued before
net art and codeworks created an ironic digital art in the 1990s.

ENZENSBERGER’S AND SCHMATZ’S / CZERNIN’S POETIC MACHINES 111

The algorithmic processing of Goethe’s poem in Perec’s radio play
is in the end no different from the stochastic computer analysis of
literature Perec’s fellow Oulipian Italo Calvino ridicules in “If on a
Winter’s Night a Traveller,” and the analytical methods of Bense’s in-
formation aesthetics. According to Reinhard Döhl, an experimental
poet, radio artist and member of Bense’s group, Perec’s Die Maschine
was such a critical blow to the efforts of the Stuttgart group that, af-
ter listening to the radio play, it completely gave up computer poetry.
The effect could only be so devastating because the group had con-
ceived of computational or, to use Bense’s term, “artificial” poetry and
art not in ironic and cultural terms, but as a formalist-scientific foray
into new realms of language. Perec showed that poetic algorithms
weren’t new and involved major limitations. In an essay on computer
poetry, Döhl writes that Perec’s radio play “seemed to us, as people
who had gone from text to computing, like a preliminary end point.
[. . .] We then did not follow these approaches anymore except in lec-
tures and discussions, but extended our interest in artistic production
with new media and notation systems into different directions.”

Enzensberger’s and Schmatz’s / Czernin’s poetic machines

In the 1970s, both Oulipo and concrete poetry had largely left com-
puter experimentation behind or delegated it to specialist subprojects.
At the same time, German poet Hans Magnus Enzensberger occupied
himself with machine-generated poetry, as he wrote in 2000, out of
boredom and frustration with the 1968 political movement having
“dissolved into hangovers, sectarianism and violent fantasies.”4 He
retreated to “certain language and mind games which had the advan-
tage of being obsessive.”5 For months, he worked on the design of
a poetry machine, “day and night,” as he writes, like “hackers, gam-
blers who place their hopes in systems, and kids who are addicted
to computer games.”6 The result was a synthetic combinatory verse
generation device similar to Queneau’s 100,000 Billion poems which
Enzensberger knew and referred to in his 1974 project paper. He also
references Harsdörffer, Kircher and Llull. The machine wasn’t built
until 2000, with a basic configuration of a PC computer program as
a control unit and a mechanical letter display as used on airports as
the letter display. Like Oulipo and concrete poetry, Enzensberger no

4Hans Magnus Enzensberger. Einladung zu einem Poesie-Automaten. Suhrkamp,
Frankfurt/M., 2000. [34], p. 13

5ibid.
6ibid.

112 4. AUTOMATISMS AND THEIR CONSTRAINTS

longer pursued computer-generated poetry after this first experiment
and even considered leaving the design paper unpublished.

In 1990, the Austrian experimental poets Franz Josef Czernin and
Ferdinand Schmatz commissioned the development of a computer
program POE intended to serve as a computational toolkit for poets
just like music composition and sound synthesis software served musi-
cal composers.7 POE differed from previous poetry programs in that
it wasn’t a poetry generator, but a piece of software for computer-
aided poetry composition. It did not synthesize built-in words, but
worked with any input, and provided a whole set of transformation
algorithms to choose from instead of only one. As such, it very much
resembled the command line userland of Unix with its multiple single-
purpose text filtering tools like grep, wc and sort. Among the algo-
rithms provided in POE were Markov chains and permutations. Cz-
ernin and Schmatz abandoned the project soon, however, drawing a
similar conclusion to Perec; namely that the machine would not help
to modify text according to semantic criteria or, in the case of POE,
not even be able to perform grammatical transformations of input
text. For Bense’s Stuttgart group, for Enzensberger and for Czernin
and Schmatz, poetic computing failed with the insight that its reality
did not live up to artificial intelligence promises.

Software dystopia: Jodi

In its pataphysical subversion of artistic and scientific formalisms,
Georges Perec’s Die Maschine parodies computation and its ideolog-
ical use as a weapon against an aesthetics of human subjectivity.
The mere concept of anti-subjectivity through programmation turned
out to be driven by likewise subjective, personal agendas. That for-
malisms could be bizarre and eccentric was one of the aesthetic in-
sights of net.art in the second half of the 1990s. Vuc Cosic, who
coined the “net.art” name, credits Oulipo as one of his major influ-
ences.8 He and his fellow net.artists also drew heavily from hacker
cultural artisanship such as ASCII art, program code poetry, graph-
ics demos, games and viral code. Jodi’s artistic exploration of the
aesthetics of computer crashes, of source and protocol code, the con-
tingency and absurdity of operating system and browser user inter-
faces, the aesthetics of computer games is computational art under

7Franz Josef Czernin and Ferdinand Schmatz. Notes about the Po-
etry Program POE, 1990. http://www.aec.at/en/archives/festival_archive/
festival_catalogs/festival_artikel.asp?iProjectID=8950. [27]

8Vuk Cosic. Contemporary ASCII. Kapelica, Ljubljana, 2000. [25], p. 14 and 32

http://www.aec.at/en/archives/festival_archive/festival_catalogs/festival_artikel.asp?iProjectID=8950
http://www.aec.at/en/archives/festival_archive/festival_catalogs/festival_artikel.asp?iProjectID=8950

SOFTWARE DYSTOPIA: JODI 113

the new conditions of ubiquitous personal and network computing.
Jodi take apart the codes of everyday computer culture and modern
art, combining the electronic graffiti aesthetics of hacker culture with
pataphysical subversions of high modernism like those of the Oulipo.

While the crash of Perec’s machine affected only a fictitious, partly
metaphorical computer, Jodi let real computers crash, or at least pre-
tended it via computer graphical trompe l’oeil. In Jodi’s works, com-
puting turns from a tool into an aesthetic end in itself. It is not a
means of production like algorithms in generative art, and it does not
even pretend to produce anything meaningful at all, in contrast to
the way Perec’s Maschine processed Goethe’s poem. In Jodi’s art, soft-
ware, computations, code, user interfaces themselves are the medium
of aesthetic reflection and play. The underlying concept of technology
corresponds to that of Oulipian pataphysics since it reads computa-
tions as constraints, not expansions, of possibilities. Just like Perec’s
Maschine put an end to the utopian hopes of transgressing human
limitations in early computer art, Jodi’s art puts a sarcastic end to the
utopias of audiovisual personal computing, from the graphical user
interface as it was invented in the 1970s at Xerox PARC Labs to the
utterly failed expectations of immersive three-dimensional “virtual re-
ality” computing in the 1990s.

Unlike 1960s computing and generative art and its indebtedness
to cybernetics, these newer developments and utopias had been
driven by a McLuhanite concept of “media.” The inventor of the GUI,
Alan Kay credits McLuhan for the initial inspiration of his work, say-
ing that it began with the insight that the computer was a “medium.”9

In its most powerful manifestations, “media art” took the same theo-
retical base apart. Nam June Paik’s early gutted-out TV sets were the
critical counterpart to McLuhan’s “global village,” the work of Jodi
and fellow net.artists the much-needed counterpoint to the high tech
kitsch of “virtual reality.”

Jodi’s contingent, anti-usable website and software does not per-
petuate utopian promises, but reflects failed promises as they man-
ifest themselves in a daily life experience with software bugginess,
instability, unreliability, user interface absurdity and other constant
frustrations of “ease,” “transparency” and “plug and play.” But like the
Oulipian constraints, Jodi’s dystopian computing creates a paradoxi-
cal moment of freedom. The computer is no longer all-encompassing,

9Alan Kay. User Interface: A Personal View. In Brenda Laurel, editor, The Art
of Human-Computer Interface Design, pages 191–207. Addison Wesley, Reading,
Massachusetts, 1990. [54]

114 4. AUTOMATISMS AND THEIR CONSTRAINTS

it no longer provides an imaginary screen of unlimited expressive
possibilities. Instead it controls its users, turns them—as Jodi’s art
reflects—into clicking slaves and prisoners of a maze of icons, menus
and unintelligible code. By mapping this maze and tracing the limita-
tions of the system, Jodi’s art allows playful human agency. “Interac-
tive art” in Jodi’s work is not, as in classical “interactive art,” a behav-
iorist simulation of interactivity through a predefined set of actions
and reactions. Instead, it is a true interactivity which encourages hu-
mans to interact with the system in unforeseen ways, in ontological
and not stochastic indeterminacy—for example, by simply shutting
off the machine or throwing it out of the window.

Software dystopia: Netochka Nezvanova

Code as cult. Jodi’s aesthetic of contingent codes and user inter-
faces has been contrarily adapted as outright user enslavement. Us-
ing a comparable aesthetic of contingent and unintelligible code, the
antiorp / integer / Netochka Nezvanova project turned the notion
of proprietary software to its ultimate extreme. Dubbed by online
magazine Salon.com the “most feared woman on the Internet,”10 N.N.
turned up in the mid-1990s on various net.art and electronic music-
related mailing lists and bombed them with messages written in a
private codework language:
Empire = body.

hensz nn - simply.SUPERIOR

per chansz auss! ‘reazon‘ nn = regardz geert lovink + h!z !lk
az ultra outdatd + p!t!fl pre.90.z ueztern kap!tal!zt buffoonz

ent!tl!ng u korporat fasc!ztz = haz b!n 01 error ov zortz on m! part.
[ma!z ! = z!mpl! ador faz!on]
geert lovink + ekxtra 1 d!menz!onl kr!!!!ketz [e.g. dze ultra unevntfl \
borrrrrrr!ng andreas broeckmann. alex galloway etc]
= do not dze konzt!tuz!on pozez 2 komput dze teor!e much
elsz akt!vat 01 lf+ !nundaz!e.

jetzt ! = return 2 z!p!ng tea + !zolat!ng m! celllz 4rom ur funerl.

vr!!endl!.nn

1001 ventuze.nn

10Katharine Mieszkowski. The most feared woman on the internet. Salon.com,
2002. http://www.salon.com/tech/feature/2002/03/01/netochka/. [67]

http://www.salon.com/tech/feature/2002/03/01/netochka/

SOFTWARE DYSTOPIA: NETOCHKA NEZVANOVA 115

/_/
/

\ \/ i should like to be a human plant
\/ _{

_{/
i will shed leaves in the shade

_\ because i like stepping on bugs

The messages were obviously composed with the help of algorith-
mic filters, substituting for example the letter “i” with “!” or the
word “and” with “+.” The project was radical chic not only in its
syntax, but also in the semantic content of the messages that at-
tacked well-known net cultural activists as “korporat fasc!ztz” (“cor-
porate fascists”). The style much resembled that of cracker cul-
tural leet speech (see p. 98). To obscure the origins of N.N.’s mes-
sages, a web of servers and domain registrations spanning New
Zealand, Denmark and Italy was created. The messages pointed
to likewise cryptic websites such as http://www.m9ndfukc.org and
http://www.eusocial.org. After displaying codework writing simi-
lar to that on the mailing lists, the sites eventually lead to pages ad-
vertising NATO.0+55, an expensive video realtime processing plug-in
for the musical composition program MAX. It is known today that
N.N. was a collective international project, with the person who
wrote NATO differing from the one who wrote the message quoted
above. The project presented itself as a sectarian cult, with its soft-
ware as the object of worship. In a wilful perversion of proprietary
software licensing, NATO licenses were revoked if licensees critically
commented upon Netochka Nezvanova in public. The business model
was to let people buy into an underground and a cult. Digital artist
Alexei Shulgin characterized N.N. as a corporation posing as an artist,
reciprocal to artists who had posed as corporations before. Local cults
of NATO VJs used N.N. style in their names and acronyms. Like a suc-
cessful leader of a sect, the programmer of NATO eventually bought
himself a Ferrari sportscar.

Scientological mind programming. That the mind could be pro-
grammed like a computer was (and is) the basic idea of L. Ron Hub-
bard’s Scientology cult. It developed and continues to sell an occult
system of systematic mind reprogramming. Its emblem, an orna-
mented cross, was derived from both the Rosicrucian cross (see p.
51) and Aleister Crowley’s OTO cross. Hubbard had been a member
of a Rosicrucian organization and the OTO (Ordo Templis Orientis)

http://www.m9ndfukc.org
http://www.eusocial.org

116 4. AUTOMATISMS AND THEIR CONSTRAINTS

before he went on to found Scientology. Scientology was his refash-
ioning of occult and magical techniques into, at least superficially, a
“scientific” technology that used lie detectors and borrowed from pop-
ular science behaviorism, cybernetics and linguistics. A device which
Scientology credits as a precursor of its “tech” is the “semantic dif-
ferential” of fringe language philosopher Alfred Korzybski. Looking
like an abstract string puppet, it was used as a meditative object and
linguistic para-computer to teach students the radical dissociation of
signs from things.

Both Crowley and Scientology made “total freedom” their main
slogan. Scientology sought to achieve this freedom through meth-
ods that included a Korzybskian reprogramming (or deprogramming)
of the meaning of words and word-permutational mind games. En-
lightenment is gained in a gnostic hierarchy of gradual stages of re-
programming. Like other religions and belief systems, Scientology
creates its own reality and involves capitalist commercialism in mar-
keting its program.—A commercialism that has been rivalled only
lately, but very successfully and with a similar clientele of pop cul-
tural celebrities by the Kabbalah Centre. One could say that it coun-
ters Hubbard’s crypto-Kabbalah with a modernized and simplified ver-
sion of the original Kabbalah.—Scientology pioneered the legal crack-
down on the Internet when, as early as in 1995, it sued critics for
copyright violation because they had published details of the Scien-
tology course programs online. The idea of internal knowledge as “in-
tellectual property,” a capitalist asset with infinite value propositions,
was pre-empted by Hubbard himself when he ordered the continuous
increase of prices for his writings. Living on a capitalist marketing
of immaterial goods whose value was secured through copyright, Sci-
entology is the oldest proprietary software company of the world. It
showed that a profitable business could be founded on selling pro-
grams. Scientology actually converged with the proprietary computer
software world when Microsoft decided to integrate Diskeeper, a PC
program written by the Scientology company Executive Software, into
its Windows 2000 operating system.

The similarity of Netochka Nezvanova’s aesthetics, the “m9ndfukc”
and of her business model to Scientology might not be accidental.
One of the key players in the N.N. project, Andrew McKenzie, makes
numerous references to Scientology in the work he is better known
for, his industrial music project Hafler Trio. One of their tracks is
called the sea org which was the name of L. Ron Hubbard’s “cadet” or-
ganization on the ship where he lived, cruising international waters to
circumvent arrest warrants. The Hafler Trio slogan “wash your brain

SOFTWARE DYSTOPIA: NETOCHKA NEZVANOVA 117

think again” strongly resembles the Scientology program of “clear-
ing” one’s brain through erasing “engrams,” traumatic memories.11

William S. Burroughs, the main source of inspiration of the industrial
music movement, too stands for the role Scientology and its concept
of the mind as a reprogrammable behavioral machine played in the
occult underground history of 20th century software and computa-
tional arts. (Other followers of Hubbard’s ideas were, temporarily,
John Cage and Morton Feldman.)

In The Electronic Revolution, Burroughs writes: “Ron Hubbard,
founder of Scientology, says that certain words and word combina-
tions can produces serious illnesses and mental disturbances.” While
commenting on the theory with some scepticism, he goes on speculat-
ing about Hubbard’s “engrams” and “reactive mind.” He sketches a
scenario of a cut-up movie that reads as if it were directly taken from
a Scientology session:

Here are some sample RM [“reactive mind”] screen ef-
fects . . .
As the theatre darkens a bright light appears on the left
side of the screen. The screen lights up.
To be nobody . . . On screen shadow of ladder and sol-
dier incinerated by the Hiroshima blast
To be everybody . . . Street crowds, riots, panics
To be me . . . A beautiful girl and a handsome young
man point to selves . . . To be you . . . They point to audi-
ence

Burroughs experimentally accepts Scientology concepts because they
cater to his idea that language is a viral code yielding immediate
physical effects. After all, Hubbard’s ideas had the same magical and
occult sources as his own underground computational linguistics.

In this thinking, “total freedom” dialectically coincides with to-
tal control. The I/O/D slogan of software as “mind control” plays
with the same dialectic. When I/O/D’s experimental Web Stalker
browser removes interface abstraction, typographical sugar-coating
and smoothness and unveils the underlying code—including HTML

11In an interview with John Duncan, McKenzie says: “This is one of the good
things about Scientology—they’ve got this big list of the things which are used
subliminally, they say, in control techniques to subdue people because it tells you
something that you must be anyway, you can’t help being, to be a body. To be
here. To be now. And of course you hear this and go ‘fuck!’ And they have this
thing about having simultaneous commands, stand up / sit down. Well you can’t do
them both at once, so what they call your ‘reactive mind’ gets completely confused.”
http://www.johnduncan.org/stop.html

http://www.johnduncan.org/stop.html

118 4. AUTOMATISMS AND THEIR CONSTRAINTS

source code and http protocol communication—, it frees the cultural
technique and imagination of web browsing from its conventional
metaphors.12 At the same time, it maps the World Wide Web as a
tightly ordered and controlled space. Freedom and mind control, in
the end, don’t contradict each other.

From dystopia to new subjectivity

If there is a common denominator of such diverse net.artists as Jodi,
I/O/D and Netochka Nezvanova, it could be called the dystopia of
computer software. Its manifestations however are diverse: playful-
anarchic dystopias of Jodi’s browser, desktop and game software;
political-analytical dystopias of the Web Stalker; occult-corporate
dystopias of Netchoka Nezvanova’s operation m9ndfukc. To think of
computation in dystopian, not naive utopian terms is what makes a
critical and analytic approach to software possible in the first place. It
implies thinking outside the system, and allows appropriation of com-
putation as artistic material and subjective expression. The poetic
codeworks of mez rephrase computer utopias on net.art’s dystopian
grounds, imagining a fusion of human bodies and machines in the
medium of code. It is a “virtual reality” and “cyberspace” art that, un-
like its techno-naive forerunners, is iconoclastic. Having given up on
real computations and immersive imagery, it creates imaginary, im-
pure computations, for example in the text cited at the beginning of
the second chapter:

N.terr.ing the net.wurk---
::du n.OT enter _here_ with fal[low]se genera.tiffs + pathways poking
va.Kant [c]littoral tomb[+age].
::re.peat[bogging] + b d.[on the l]am.ned.
::yr p[non-E-]lastic hollow play.jar.[*]istic[tock] met[riculation.s]hods
sit badly in yr vetoed m[-c]outh.

These codes create, in the original sense of the word, science fic-
tion. They generate a “new flesh” as it is imagined in David Cro-
nenberg’s film Videodrome, a melting of technology and human bod-
ies. In this piece, this fusion happens purely in the medium of the
imagination of the subject “N.terr.ing the net.wurk.” Mez’s text is,
at it seems, based on a chat server login message that warns people
not to enter with false identities. She transcodes it into “du n.OT
enter _here_with fal[low]se genera.tiffs + pathways poking va.Kant
[c]littoral tomb[+age].” The old science fiction of computing as cul-
tural and epistemological disturbance morphs into computing as a

12I/O/D Web Stalker homepage: http://www.backspace.org/iod/iod4.html

http://www.backspace.org/iod/iod4.html

FROM DYSTOPIA TO NEW SUBJECTIVITY 119

fiction. The code in this fiction is sexual as it is attached to the sub-
jectivity of the person who interacts with it. Computer and network
codes accumulate into personal diaries, and build cyborgs in the imag-
ination. One could call mez’s codeworks a fantastic realism of the
Internet.

This realism is part of a larger network of a post-constructivist,
post-clean room computational art that had been instigated by net.art.
In this art, software has turned from a purified machine process into
something embedded into cultural codes: version numbers, updates,
protocols, interfaces, visible and invisible codes and cultural conven-
tions of network communication.

CHAPTER 5

What Is Software?

A cultural definition

The previous chapters have spoken of “computations,” meaning cal-
culation and algorithms performed either in the medium of language
itself or with the help of mechanical or electronic devices. For many
speculative computations, like those in the Sefer Yetzirah with its ob-
scure mechanical device, it’s difficult, if not impossible, to draw a
clear line between symbolic-imaginary and material processing, soft-
ware and hardware.

What is software? Simply defined as algorithms, software would
fail, first of all, to encompass the vast speculative imagination from
magic to codework in which computational code rarely is pure algo-
rithms, but a metaphorical hybrid. A strictly formal definition of soft-
ware would also fail to describe the line of the Steven Seagal movie,
“300,000 pages of code. Or 60 minutes of triple-X rubber-and-leather
interactive bondage porno.” That line shows that such a cultural un-
derstanding isn’t far-fetched, but is already street wisdom. Why, af-
ter all, did the mathematician John W. Tukey invent the term “soft-
ware” in 1957 given that the term algorithm, phonetically derived
from the 9th century Persian mathematician Muhammad ibn Musa al-
Khwarizmi, existed centuries before? Obviously, software referred to
algorithms as control logic that was abstracted from the machine. The
Unix operating system which runs on almost any kind of hardware1

is a prime example of software as an abstraction from hardware. But
just as the cultural history of computation is rich with metaphoriza-
tions and meanings inscribed into formal processes, the same is true
for software. In 1970, only 13 years after Tukey’s coinage, Jack Burn-
ham’s Software exhibition appropriated the term metaphorically. In a
1968 essay Systems Esthetics, Burnham observed that a written piece

1The free Unix clone NetBSD supports runs almost any existing hardware plat-
form including IBM-compatible PCs, palmtops, video game consoles, old Amiga and
Atari home computers and proprietary Unix servers.

121

122 5. WHAT IS SOFTWARE?

of conceptual artist Donald Judd “resembles what a computer pro-
grammer would call an entity’s /list structure/.”2 Reading these sem-
blances, Burnham did not only adopt software as a metaphor for con-
ceptual art, but also turned, and aestheticized, computer software
into concept art.

Software as practice

Just as, for example, literature is not only what is written, but all
cultural practices it involves—such as oral narration and tradition,
poetic performance, cultural politics—software is both material and
practice. As the verb “to google” for using the Google search engine
shows, or in their computational sense, “to browse,” “to chat” and
“to download,” human practices are born out of the use of software.
Googling is nothing but the shorthand for using the web-based client-
server software written by Google corporation’s programmers. In this
sense, software is no longer just machine algorithms, but something
that includes the interaction, or, cultural appropriation through users.
This appropriation is more than just a cybernetic human-machine
interaction and what computer science and media theory often re-
duce to pointing, clicking and other Pavlovian responses within the
restraints of a programmed system.—The same reductive understand-
ing of interaction has turned “interactive art” in its common phenomo-
nen of behavioral video installations into an artistic dead-end.—True
interaction with technical systems involves creative use and abuse
outside the box, metaphorization, writing and rewriting, configuring,
disconfiguring, erasing. All these practices also make up software.

It wasn’t just artistic appropriations that inscribed metaphors into
software. High-level, machine-independent programming languages
and operating systems such as C and Unix gave birth, around the
same time, to a culture that gradually detached software from the con-
cept of code running on a machine. Through program code listings in
books and computer magazines, source code snippets and patches ex-
changed in electronic networks or even oral conversations, software
took up a life of its own. The results were political-philosophical
movements like Free Software, programming puns such as recur-
sive acronyms, hacker slang that mixed English and computer lan-
guage constructs and poetry in computer languages such as Larry

2Jack Burnham. Systems Esthetics. Artforum, 9 1968. http:
//www.arts.ucsb.edu/faculty/jevbratt/classes_previous/fall_03/arts_
22/Burnham_Systems_Esthetics.html. [16]

http://www.arts.ucsb.edu/faculty/jevbratt/classes_previous/fall_03/arts_22/Burnham_Systems_Esthetics.html
http://www.arts.ucsb.edu/faculty/jevbratt/classes_previous/fall_03/arts_22/Burnham_Systems_Esthetics.html
http://www.arts.ucsb.edu/faculty/jevbratt/classes_previous/fall_03/arts_22/Burnham_Systems_Esthetics.html

SOFTWARE VERSUS HARDWARE 123

Wall’s first Perl poem from 1990. Free software—in the GNU under-
standing of an embedded value that is not only engineering freedom,
but ontological freedom—is perhaps the strongest example of a cul-
tural and philosophical notion of software. An artistic understanding
of software also abounds in computer science from Donald Knuth’s
Art of Computer Programming to Paul Graham’s recent Hackers and
Painters,3 although it might be based on a narrow understanding of
art as high craftsmanship. To no longer define software as just algo-
rithms running on hardware helps to avoid common misunderstand-
ings of software art as some kind of of genius programmer art. If
software is a broad cultural practice, then software art can be made
by almost any artist.

Software versus hardware

Aside from the blurriness of software as a machine process and soft-
ware as a human cultural practice, the technical distinction between
software and hardware is blurry itself. Is instruction code hard-
ware once it is burned into an EPROM, is it software when it is
stored in an erasable flash ROM? What about microcode, computer
programs stored right within chips in any modern CPU? Or chips
like the Transmeta Crusoe which has only minimal hardware wiring
and implements its CPU instruction set—like Intel-compatible x86—
solely through an embedded emulation software (written originally
by Linux creator Linus Torvalds)? What about the BIOS or firmware
of computer mainboards, graphics cards, network adaptors without
which this hardware simply isn’t operational? Isn’t it a totally ar-
bitrary distinction whether a circuit is hardwired into the layout of
chip transistors, or whether the same logic is stored within a memory
chip? The definition of hardware, in turn, is not less doubtful. The
first modern computing hardware, the Turing machine, did not ma-
terially exist, but was theoretical and imaginary. The same applies
to Donald Knuth’s Mix computer. The cultural history of computa-
tion proves that hardware can be metaphorical when algorithms run
on any imagined material including the entire cosmos in Quirinus
Kuhlmann’s speculation. Still, in the end the distinction between soft-
ware and hardware relies on Cartesian categories: Is, for example, a
human brain that performs a computation a piece of hardware?

3Donald E. Knuth. The Art of Computer Programming. Addison-Wesley, Reading,
Massachusetts, 1973-1998. [55], Paul Graham. Hackers and Painters. O’Reilly,
Sebastopol, 2004. [40]

124 5. WHAT IS SOFTWARE?

If the duality of software and hardware needs to be suspended,
it follows that the notion of software as immaterial versus hardware
as material must be suspended, too. The difference between materi-
ality and immateriality exists within software itself: an algorithm is
material in its stored, coded form and most of its cultural practices.
The immaterial component might be the imagination and phantasms
invested into the software, that inserting a CD-ROM, to refer to the
previous example, might blow up the earth or get you a sexual turn-
on (or turn-off perhaps). Some software chiefly or purely exists in
imaginary form:

• vaporware, the constantly promised “stable upgrade” of
a crashing computer program for example, or the ever-
procrastinated new version of a piece of software, like the
computer game Duke Nukem Forever;

• hoax viruses, i.e. E-Mail “memes” which instruct gullible
readers to erase critical system files on their computer;

• imaginary virus infection; hardware failures or human mis-
takes wrongly interpreted as computer virus infections.

If the location or even existence of some software isn’t quite clear, if
a piece software isn’t code running on machine because it appears as
pseudo code in a book or is, like most Perl poetry for example, not
even a working algorithm, then a technical definition of software is
too limited. In the end, “software” and “computation” can’t be strictly
differentiated from each other. The cultural history of software is the
cultural history of computation.

Conclusion

Software, it follows, is a cultural practice made up of (a) algorithms,
(b) possibly, but not necessarily in conjunction with imaginary or ac-
tual machines, (c) human interaction in a broad sense of any cultural
appropriation and use, and (d) speculative imagination. Software
history can thus be told as intellectual history, as opposed to media
theories which consider cultural imagination a secondary product of
material technology. This booklet took language computations as its
primary examples mostly because language can be computational in
itself. Thanks to its abstraction and grammatical structure, it also ex-
presses computation better than any other symbolic form. Program-
ming languages, with their modified English, are the proof. But or
architecture, too, could serve as the main examples in a cultural his-
tory of computation since they both combine formal instruction with
imagination.

CONCLUSION 125

The cultural history of computation shows that it is as rich and
contradictory as that of any other symbolic form. It encompasses
opposites, algorithms as a tool versus algorithms as a material of
aesthetic play and speculation, computation as inner workings of na-
ture (as in Pythagorean thought) or God (as in Kabbalah and magic)
versus computation as culture and a medium of cultural reflection
(starting with Oulipo and hacker cultures in the 1960s), computa-
tion as a means of abolishing semantics (Bense) versus computation
as a means to structure and generate semantics (as in Lullism and
Artificial Intelligence), computation as a means of generating totality
(Quirinus Kuhlmann) versus computation as a means of taking things
apart (Tzara, cut-ups), software as ontological freedom (GNU) versus
software as ontological enslavement (Netochka Nezvanova), ecstatic
computation (Kuhlmann, Kabbala, Burroughs) versus rationalist com-
putation (from Leibniz to Turing) versus pataphysical computation as
the parody of both rationalist and irrationalist computation (Oulipo
and generative psychogeography), algorithm as expansion (Lullism,
generative art) versus algorithm as constraint (Oulipo, net.art), code
as chaotic imagination (Jodi, codeworks) versus code as structured
description of chaos (Tzara, John Cage).

Computation and its imaginary are rich with contradictions, and
loaded with metaphysical and ontological speculation. Underneath
those contradictions and speculations lies an obsession with code
that executes, the phantasm that words become flesh. It remains
a phantasm, because again and again, the execution fails to match
the boundless speculative expectations invested into it. Cultural and
political semantics result merely from its dull formalisms and their
interference with daily life, from account balance statements to “end-
user software.” Formalisms create semantics in a wholly different way
than people expect from an allegedly “intelligent machine.” Comput-
ers therefore exist, as hacker wisdom says, to solve problems which
we would not even be aware of having if not for the computers them-
selves.

References

[1] Theodor W. Adorno and Max Horkheimer. Dialectic of Enlightenment. Verso,
London, 1979 (1947). 83

[2] Andreas Alciatus. Emblematum Libellus. Wissenschaftliche Buchgesellschaft,
Darmstadt, 1991 (1542). 22

[3] Mario Alinei and Alfredo Schiaffini. Spogli elettronici dell’italiano delle origini
e del Duecento. Mouton, The Hague, 1968. 73

[4] Johann Heinrich Alsted. Encyclopaedia. Holzboog, Stuttgart (Herborn), 1989
(1630). 45

[5] Johann Valentin Andreae. Turris Babel. Zetzner, Strasbourg, 1619. 51
[6] Johann Valentin Andreae. Fama Fraternitatis, Confessio Fraternitatis, Chymis-

che Hochzeit: Christiani Rosencreutz Anno 1459. Calwer Verlag, Stuttgart,
1994 (1973). 51

[7] Jonathan Barnes, editor. Early Greek Philosophy. Penguin, Harmondsworth,
2002. 20

[8] Walter Benjamin. Charles Baudelaire: A Lyric Poet in the Era of High Capital-
ism. New Left Books, London, 1973. 71

[9] Mercedes Blanco. Les rhétoriques de la pointe. Librairie Honoré Champion,
Paris, 1992. 22, 24

[10] Harold Bloom, editor. Selected Writings of Walter Pater. Columbia University
Press, New York, 1982. 22

[11] Boethius. De Musica. In Opera omnia. Firmin-Didot, Paris, 1882. 21
[12] Anthony Bonner, editor. Doctor Illuminatus: A Ramon Llull Reader. Princeton

University Press, Princeton, New Jersey, 1993. 24, 133
[13] Jorge Luis Borges. The Library of Babel. In Ficciones, pages 79–88. Grove

Press, New York, 1941. 61
[14] André Breton. Manifesto of Surrealism. In Manifestoes of Surrealism, pages

1–48. Ann Arbor Paperbacks, Ann Arbor, Michigan, 1924. 71
[15] Edmund Burke. A Philosophical Enquiry into the Origin of our Ideas of the

Sublime and Beautiful. Oxford University Press, Oxford, 1990 (1757). 14
[16] Jack Burnham. Systems Esthetics. Artforum, 9 1968. http://www.arts.

ucsb.edu/faculty/jevbratt/classes_previous/fall_03/arts_22/
Burnham_Systems_Esthetics.html. 122

[17] William S. Burroughs. The Cut-Up Method of Brion Gysin. In The Third Mind
[18]. 77, 80

[18] William S. Burroughs. The Third Mind. Viking, New York, 1978. 127, 128
[19] William S. Burroughs. Electronic Revolution. Expanded Media Edition, Bonn,

1982. 18, 20, 50
[20] John Cage. Roaratorio. Ein irischer Circus über Finnegans Wake. Athenäum,

Königstein/Taunus, 1982. 77, 78

127

http://www.arts.ucsb.edu/faculty/jevbratt/classes_previous/fall_03/arts_22/Burnham_Systems_Esthetics.html
http://www.arts.ucsb.edu/faculty/jevbratt/classes_previous/fall_03/arts_22/Burnham_Systems_Esthetics.html
http://www.arts.ucsb.edu/faculty/jevbratt/classes_previous/fall_03/arts_22/Burnham_Systems_Esthetics.html

128 REFERENCES

[21] Italo Calvino. Invisible Cities. Harvest Books, Fort Washington, 1978. 81
[22] Italo Calvino. Cybernetics and Ghosts. In The Uses of Literature, pages 3–27.

Harcourt, San Diego, 1982 (1967). 80, 92
[23] Italo Calvino. Prose and anticombinatorics. In Motte [71], pages 143–152.

92
[24] Italo Calvino. If on a Winter’s Night a Traveller. Everyman Publishers, London,

1993 (1979). 73
[25] Vuk Cosic. Contemporary ASCII. Kapelica, Ljubljana, 2000. 112
[26] Aleister Crowley. The Book of Lies. Red Wheel Weiser, 1970 (1913). 48
[27] Franz Josef Czernin and Ferdinand Schmatz. Notes about the Poetry

Program POE, 1990. http://www.aec.at/en/archives/festival_archive/
festival_catalogs/festival_artikel.asp?iProjectID=8950. 112

[28] Richard Dawkins. The Selfish Gene. Oxford University Press, Oxford, 1989
(1976). 19

[29] Franz Dornseiff. Das Alphabet in Mystik und Magie. Teubner, Leipzig, Berlin,
1925. 15

[30] Umberto Eco. Der Streit der Interpretationen. Universitätsverlag Konstanz,
Konstanz, 1987. 25

[31] Umberto Eco. Foucault’s Pendulum. Ballantine Books, 1990. 33
[32] Umberto Eco. Misreadings. Harvest, San Diego, 1993. 82
[33] Umberto Eco. The Island of the Day Before. Penguin, Harmondsworth, 1996.

23
[34] Hans Magnus Enzensberger. Einladung zu einem Poesie-Automaten.

Suhrkamp, Frankfurt/M., 2000. 111
[35] James George Frazer. The Golden Bough. Macmillan, London, 1950. 19
[36] Franchino Gaffurio. De harmonia musicorum. Forni, Bologna, 1972 (1518).

21, 133
[37] Joscelyn Godwin. Athanasius Kircher. Edition Weber, Berlin, 1994 (1979).

35, 133
[38] Eugen Gomringer. 3 variationen zu kein fehler im system. In Eugen Gom-

ringer, editor, konkrete poesie, pages 63–64. Reclam, Stuttgart, 1972. 65
[39] Eugen Gomringer. vom vers zur konstellation. In Eugen Gomringer, editor,

zur sache der konkreten, volume 1, pages 7–12. Erker-Verlag, St. Gallen, 1988
(1954). 66

[40] Paul Graham. Hackers and Painters. O’Reilly, Sebastopol, 2004. 123
[41] Mark Greengrass, editor. The Hartlib Papers. University Microfilms, Michigan,

1996. CD-ROM. 60
[42] Brion Gysin. Permutation poems. In The Third Mind [18]. 17
[43] Georg Philipp Harsdörffer. Frauenzimmer Gesprächspiele. Deutsche Neu-

drucke: Reihe Barock. Niemeyer, Tübingen, 1968-69 (1643-57). 58
[44] Georg Philipp Harsdörffer. Mathematische und philosophische Erquickstunden.

Texte der frühen Neuzeit. Keip, Frankfurt (Nürnberg), 1990 (1636). 58, 133
[45] Charles O. Hartman and Hugh Kenner. Sentences. Sun and Moon Pres, Los

Angeles, 1995. 75
[46] Douglas R. Hofstadter. Gödel, Escher, Bach. Basic Books, New York, 1979. 26
[47] Sharon Hopkins. Camels and Needles : Computer Poetry meets the Perl

Programming Language, 1991. http://www.wall.org/~sharon/plpaper.
ps. 95

http://www.aec.at/en/archives/festival_archive/festival_catalogs/festival_artikel.asp?iProjectID=8950
http://www.aec.at/en/archives/festival_archive/festival_catalogs/festival_artikel.asp?iProjectID=8950
http://www.wall.org/~sharon/plpaper.ps
http://www.wall.org/~sharon/plpaper.ps

REFERENCES 129

[48] Moshe Idel. The Mystical Experience in Abraham Abulafia. State University of
New York Press, Albany, 1988. 48

[49] Moshe Idel. Ramon Lull and Ecstatic Kabbalah. Journal of the Warburg and
Courtauld Institutes, 51:170–174, 1988. 36

[50] Roman Jakobson. Two Aspects of Language and Two Types of Aphasic Distur-
bances. In Fundamentals of Language, pages 115–133. Mouton, The Hague,
Paris, 1971. 19

[51] Alfred Jarry. Exploits and Opinions of Dr. Faustroll, Pataphysician. Exact
Change, Berkeley, 1996 (1911). 88

[52] Asger Jorn. La création ouverte et ses ennemis. In Situationniste [93], pages
175–196. 71

[53] Immanuel Kant. Critique of the Power of Judgment. The Cambridge Edition
of the Works of Immanuel Kant in Translation. Cambridge University Press,
Cambridge, 2001. 14

[54] Alan Kay. User Interface: A Personal View. In Brenda Laurel, editor, The Art of
Human-Computer Interface Design, pages 191–207. Addison Wesley, Reading,
Massachusetts, 1990. 113

[55] Donald E. Knuth. The Art of Computer Programming. Addison-Wesley, Read-
ing, Massachusetts, 1973-1998. 27, 123

[56] Donald E. Knuth. Things a Computer Scientist Rarely Talks About. CSLI Publi-
cations, Stanford, 2001. 27

[57] Jan Amos Komenský. Orbis sensualium pictus. In Opera Omnia, volume 17,
pages 69–271. Academia Praha, Praha, 1970. 40, 133

[58] Quirinus Kuhlmann. Epistolae duae. Lotho de Haes, Amsterdam, 1674. 105
[59] Quirinus Kuhlmann. Prodomus. Lotho de Haes, Amsterdam, 1674. 61
[60] Quirinus Kuhlmann. Himmlische Libes-küsse. Niemeyer, Tübingen, 1971

(1671). 47
[61] François Le Lionnais. Lipo: First manifesto. In Motte [71], pages 26–28. 74,

94
[62] G.W. Leibniz. Dissertatio de arte combinatoria. In Sämtliche Schriften, vol-

ume 1 of VI, pages 165–230. Akademie-Verlag, Berlin, 1989. 45
[63] Steven Levy. Hackers. Project Gutenberg, Champaign, IL, 1986 (1984). 27,

94
[64] Klaus Maeck and Walter Hartmann, editors. Decoder Handbuch. Trikont,

Duisburg, 1984. 18
[65] Solomon Maimon. An Autobiography. University of Illinois Press, Chicago,

2001 (1792). 29
[66] Stéphane Mallarmé. Un coup de dés jamais n’abolira le hasard. Gallimard,

Paris, 1993 (1914). 64
[67] Katharine Mieszkowski. The most feared woman on the internet. Salon.com,

2002. http://www.salon.com/tech/feature/2002/03/01/netochka/. 114
[68] Abraham A. Moles. erstes manifest der permutationellen kunst. Stuttgart,

1963. 92
[69] Abraham A. Moles. Art et Ordinateur. Casterman, Paris, 1981 (1971). 92
[70] Daniel Georg Morhof. De Acuta Dictione. Petrus Böckmannus, Lübeck, 1705.

58
[71] Warren F. Motte, editor. Oulipo. A Primer of Potential Literature. University of

Nebraska Press, Lincoln, London, 1986. 128, 129, 130

http://www.salon.com/tech/feature/2002/03/01/netochka/

130 REFERENCES

[72] Novalis. Das Allgemeine Brouillon. Meiner, Hamburg, 1993 (1798/99). 63
[73] Hans Otto Peitgen. The Beauty of Fractals. Springer, Heidelberg, New York,

1986. 28
[74] Georges Perec. Die Maschine. Reclam, Stuttgart, 1972 1968. 134
[75] Georges Perec. A Void. HarperCollins, New York, 1994 1969. 91
[76] Giovanni Pico della Mirandola. Oration on the Dignity of Man. MacMillan,

1985 (1486). 35
[77] Publilius Optatianus Porfyrius. Publilii Optatiani Porfyrii Carmina. Paravia,

Turin, 1973. 44
[78] Vladimir Propp, editor. Morphology of the Folktale. University of Texas Press,

Austin, Texas, 1968 (1927). 81
[79] Thomas Pynchon. Gravity’s Rainbow. Vintage, London, 1995 (1973). 33
[80] Thomas Pynchon. The Crying of Lot 49. Perennial Classics, New York, 1999

(1967). 33
[81] Raymond Queneau. Exercices de style. Gallimard, Paris, 1947. 89
[82] Raymond Queneau. Cent mille milliards de poèmes. Gallimard, Paris, 1961.

89, 90
[83] Raymond Queneau. Potential literature. In Motte [71], pages 51–64. 90
[84] Simon Richter. Laocoon’s Body and the Aesthetics of Pain: Winckelmann, Less-

ing, Herder, Moritz, Goethe. Wayne State University Press, Detroit, 1992. 22
[85] W. Rhys Roberts, editor. Longinus on the Sublime. Cambridge University Press,

Cambridge, 1899. 14
[86] Friedrich Rückert. Grammatik, Poetik und Rhetorik der Perser. Verlagsbuch-

handlung Otto Zelle, Antiquariat Otto Harrassowitz, Wiesbaden, Osnabrück
(Gotha), 1966 (1874). 41

[87] Maciej Kazimierz Sarbiewski. De Acuto et Arguto liber unicus. In Wykladi Po-
etyki, pages 1–20. Wydawnictwo Polskiej Akademii Nauk, Wroclaw, Krakow,
1958. 23, 133

[88] Tom Sawyer and Arthur David Weingarten. Plots Unlimited. Ashleywilde,
Malibu, 1994. 82, 85

[89] Julius Caesar Scaliger. Poetices libri septem. Frommann, Stuttgart, 1964
(1561). 44

[90] Jacques Scherer. Le livre de Mallarmé. Gallimard, Paris, 1977 (1957). 64
[91] John R. Searle. Minds, brains, and programs. The Behavioral and Brain Sci-

ences, 3:417–456, 1980. 107, 134
[92] Claude E. Shannon. A Mathematical Theory of Communication. Bell System

Technical Journal, 27:379–423, July 1948. 68, 74
[93] Internationale Situationniste, editor. Internationale situationniste. Édition

augmentée. Librairie Arthème Fayard, Paris, 1997 (1958-1969). 89, 93, 129
[94] Cornelia Sollfrank, editor. net.art generator. Verlag für moderne Kunst, Nürn-

berg, 2004. 87, 134
[95] Alan Sondheim. Introduction: Codework. American Book Review, 22(6):1–4,

September 2001. 98
[96] Karlheinz Stockhausen. Weberns Konzert für neun Instrumente op. 24. In

Texte zur elektronischen und instrumentalen Musik, pages 24–31. M. DuMont
Schauberg, Köln, 1963 (1953). 26

[97] Jonathan Swift. Gulliver’s Travels. Washington Square Press, New York, 1960.
60, 134

REFERENCES 131

[98] Tristan Tzara. Pour fair une poème dadaïste. In Oeuvres complètes. Gallimard,
Paris, 1975. 76

[99] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.
O’Reilly, Cambridge, Köln, Paris, Sebastopol, Tokyo, 1996. 75

[100] McKenzie Wark. Essay: Codework. American Book Review, 22(6):1–5, Sep-
tember 2001. 97

[101] Frances Yates. The Art of Memory. Routledge & Kegan Paul, London, 1965.
43

[102] La Monte Young. Composition 1960 #10 to Bob Morris. In Harald Szeemann
and Hans Sohm, editors, happening & fluxus. Kölnischer Kunstverein, Köln,
1970 (1960). 49

List of Figures

1 Eric Bogosian as mad scientist Travis Dane in
the film Under Siege 2—Dark Territory, Warner
Brothers/Regency Enterprises, 1995 7

1 Google search results for the keyword combination
“software” and “magic” 16

2 Franchino Gaffurio, De Harmonia Musicorum, Milan,
1518 [36], title page illustration 21

3 Maciej Kazimierz Sarbiewski, De acuto et arguto,
1628 [87], diagram illustrating the construction of
a witty statement 23

4 Torah Codes 2000, a commercial software application
for Kabbalistic text analysis, screenshot from the
online store of http://www.jewishsoftware.com 33

5 Athanasius Kircher, Oedipus Aegyptiacus, 1652-4,
sunflower-shaped diagram of the name of God in
different languages [37] 34

6 Ramon Llull (Raimundus Lullus), Ars brevis, 1308
[12], the four figurae, or algorithms, for processing
the table (tabula) of elements 36

7 Jan Amos Komenský (Comenius), Orbis pictus, 1657
[57]. Correlating sounds, images and letters on its
opening pages, the book creates a graphical user
interface for written language 40

8 The three-dimensional Looking Glass desktop, an
experimental software development project of Sun
Microsystems 42

9 Georg Philipp Harsdörffer, Fünffacher Denckring
der teutschen Sprache, 1636 [44], a morphological
generator of German words 46

133

http://www.jewishsoftware.com

134 LIST OF FIGURES

1 xlife, a free software implementation of Conway’s
Game of Life for Unix-like operating systems 57

2 Jonathan Swift, Gulliver’s Travels, 1726 [97],
original illustration of the combinatorial “engine” at
the Grand Academy of Lagado 59

3 Cornelia Sollfrank et.al., Net.art generators [94],
automatically generated variations of Andy Warhol’s
Flowers 84

4 Adrian Ward, Auto-Illustrator, screenshot of the
random text tool 86

1 Athanasius Kircher, Musurgia universalis, 1650,
design of an algorithmic music composition machine105

2 John Searle, the Chinese room thought experiment
[91] as illustrated on the website http://www.
macrovu.com/CCTMap4ChineseRm.html 107

3 Georges Perec, Die Maschine, 1968 [74], script pages
of the radio play 110

http://www.macrovu.com/CCTMap4ChineseRm.html
http://www.macrovu.com/CCTMap4ChineseRm.html

Index

.walk, 70
3dwm (software), 41

Abulafia, Abraham, 3, 30, 31, 46, 47,
50

Acid (software), 83
Adobe (company), 83
Adobe Illustrator (software), 83
Adorno, Theodor W., 81
aesthetics, 18, 20, 26, 65, 66, 68, 71,

74, 77, 81, 83, 86, 91, 96, 110,
111, 114

al-Khwarizmi, Muhammad ibn Musa,
119

ALAMO, 89
Albers, Josef, 68
Alciatus, Andreas, 20
aleatory, 88, 101
Algol (programming language), 92
algorithm, 6, 7, 15, 21, 23–25, 29,

30, 36, 37, 42, 44, 46, 48, 51–
53, 55, 56, 63, 64, 67, 71–84,
88–91, 101–104, 106–111, 113,
119–123

Alinei, Mario, 71
Alsted, Johann Heinrich, 37, 38, 43,

61
Amiga (operating system), 119
anarchism, 75, 77, 116
Andreae, Johann Valentin, 38, 49, 50,

58, 59
Anger, Kenneth, 14
Antonioni, Michelangelo, 80
Apple Macintosh (operating system),

39, 41, 73, 85
Apple Newton, 5
architecture, 10, 63, 65, 122

Aristophanes, 10
Aristotle; Aristotelian, 22, 27, 57
Arnaud, Noël, 92
Art and Language, 67
Artificial Intelligence (A.I.), 36, 53,

70, 72, 81, 85, 86, 91, 102–106,
110, 123

artificial life, 85
ASCII art, 96, 110
assembly (programming language),

36
AT&T (company), 65
Atari (company), 119
Athenaios, 40, 43
Auto-Illustrator (software), 83, 84
avant-garde, 24, 65, 66, 87

Böhme, Jakob, 46
Bach, Johann Sebastian, 24, 48, 73
Band-in-a-Box (software), 83
Barthes, Roland, 78
BASIC (programming language), 31
Baudelaire, Charles, 69
Bauhaus, 63, 65, 68, 83
Beatles, 14
Bell Labs, 65
Benjamin, Walter, 69
Bense, Max, 65–72, 85, 88–91, 109,

110, 123
Bible, 13, 32, 45
Bill, Max, 63, 68
BIOS, 121
Blade Runner (film), 106
bloatware, 7
Boethius, Anicius Manlius Severinus,

18, 19
Bond, James, 6

135

136 INDEX

Borges, Jorge Luis, 59–62, 64, 73,
102

Boulez, Pierre, 24, 77
Boyle, Robert, 58
Bremer, Claus, 64
Breton, André, 69, 87
Brown, Earle, 75
Bruno, Giordano, 37, 52
Burke, Edmund, 12
Burnham, Jack, 67, 119, 120
Burroughs, William S., 15–18, 26, 46,

47, 50, 75, 77, 88, 89, 115, 123
BYTE (computer magazine), 72

C (programming language), 75, 120
Cage, John, 7, 75–78, 84, 88, 101,

115, 123
Calvino, Italo, 71, 78, 79, 85, 90, 91,

109
Campanella, Tommaso, 38, 50, 58
Cardew, Cornelius, 25
Carroll, Lewis, 11, 12
Cathars, 6
Caulfield, Patricia, 81
cellular automata, 55
chaos, 10, 26, 30, 74, 77, 79, 123
chat roboter, 70
Chomsky, Noam, 101
Cobra (group), 92
codework, 97
codeworks, 11, 96–99, 101, 102, 108,

112, 113, 116, 117, 119, 123
Collège de Pataphysique, 87, 89, 92
combination, 29, 30, 36, 37, 44, 51,

52, 79, 85, 87, 115
combinatorics, 43, 46, 57, 60–62, 78–

80, 89–91, 101–103
Comenius, Jan Amos, 38, 39, 41, 49,

50, 59
concrete poetry, 63–66, 68, 101, 109
Conrad, Tony, 16
constellation, 62–65
constraint, 43, 47, 88–92, 96, 111,

123
Conway’s Game of Life, 55, 56
Conway, John Horton, 56
Cosic, Vuc, 110
CPU, 48, 121
Cronenberg, David, 47, 116

Crowley, Aleister, 14–16, 46, 113,
114

cryptography, 6, 7
Culver, Andrew, 75, 76
cut-ups, 10, 15–17, 68, 75, 77, 78, 88,

101, 115, 123
cybernetics, 67, 68, 90, 91, 111, 114,

120
cyberpunk, 12
Czernin, Franz Josef, 73, 110

d’Alembert, Jean-le-Rond, 37
Döhl, Reinhard, 109
Dada, 74–77, 81, 82, 84, 101
dadadodo (software), 73
database, 13, 32, 35, 36, 80
Dawkins, Richard, 17
de Jong, Jacqueline, 92
Debord, Guy, 91, 92
Deconstructor (software), 73
demiurgy, 52, 55
dice, 30, 55, 62, 76, 85
Dick, Philip K., 106
Dicuil, 42
Diderot, Denis, 37
Dissociated Press (software), 73
Dornseiff, Franz, 13
DOS (operating system), 39, 73, 75
Duke Nukem Forever (software), 122

E-Mail, 10, 95, 97, 108, 122
Eco, Umberto, 21–23, 31, 79, 80
ecstatic, 16, 26, 30, 34, 46, 51, 75,

77, 123
Einstein, Albert, 30
Emacs (software), 48, 73
emblems, 20
encyclopedism, 37, 38, 51, 61, 79, 84,

87
Enzensberger, Hans Magnus, 109,

110
Essl, Karlheinz, 73

Feldman, Morton, 75, 115
Fenollosa, Ernest, 66
Fluxus, 25, 47, 67, 73, 75
Flynt, Henry, 25
Fourier, Jean Baptiste Joseph, 23
fractals, 26

INDEX 137

Frazer, James George, 16–18
Free Software, 48–50, 52, 120
Freemasons, 6
Frelih, Luka, 81

Gödel, Kurt, 60, 64
Gaffurio, Franchino, 19, 21
Gardner, Martin, 11
genius, 22, 42, 57, 74, 80, 82, 104,

121
George, Stefan, 66
gnosticism, 13, 46, 114
GNU, 6, 13, 48, 49, 73, 103, 121, 123
GNU General Public License (GPL),

48, 49
God, 12, 13, 16, 25, 27, 28, 30, 31,

33–37, 39, 42, 50, 123
Godard, Jean-Luc, 80
Goethe, Johann Wolfgang, 107–109,

111
golem, 39
Gomringer, Eugen, 63, 64, 66
Google, 13, 120
gothic, 12
Gracián, Baltasar, 20, 22
Graham, Paul, 121
Grand Guignol, 79
Gysin, Brion, 15–17, 26, 29, 46, 75,

77, 88, 89, 92

Haacke, Hans, 67
hacker, 25, 48, 92, 96, 109–111, 120,

123
hardware, 10, 52, 67, 70, 103, 106,

119, 121, 122
harmony, 18–21, 23, 25, 26
Harsdörffer, Georg Philipp, 43–45,

52, 53, 56, 59, 79, 80, 88, 109
Hartlib, Samuel, 49, 58
Hartman, Charles O., 73
Hawking, Stephen, 30
Heemskerk, Joan, 93
Heidegger, Martin, 85
Heraclitus, 18, 19
hermetic, 23, 38, 49
hieroglyphs, 6, 7, 33
Hofstadter, Douglas R., 24, 48
Honeywell (company), 46
Hopkins, Sharon, 93

Horkheimer, Max, 81
Hubbard, L. Ron, 113–115

I Ching, 75, 76
I/O/D, 86, 89, 115, 116
IBM (company), 119
IC (software), 75
Idel, Moshe, 34
indeterminism, 75–78, 112
industrial music, 14, 114, 115
information aesthetics, 65, 71, 91,

109
Intel (company), 121
interactive art, 93, 112, 120
interface, 24, 36, 38, 41, 50, 52, 83,

85, 93, 110–112, 115, 117
Invisible College, 58
IRCAM, 24
Isou, Isidore, 89
Itten, Johannes, 68

Jagger, Mick, 28
Jakobson, Roman, 12, 17
Jarry, Alfred, 70, 86, 88
Jodi, 86, 93–98, 110–112, 116, 123
John, Elton, 28
Johnston, Ryan, 81
Jorn, Asger, 68, 69, 87
Joy, Bill, 6
Joyce, James, 10–12, 72, 76
Judd, Donald, 120

Kabbalah, 27–31, 33–35, 39, 44–46,
48, 50, 62, 69, 84, 101, 114, 123

Kafka, Franz, 72
Kant, Immanuel, 12, 27, 116
Kawara, On, 67
Kay, Alan, 111
Kenner, Hugh, 72, 73
Khlebnikov, Velimir, 12, 66
Kircher, Athanasius, 33, 34, 37, 45,

103, 104, 109
Knuth, Donald, 6, 25, 121
Korzybski, Alfred, 114
Kosuth, Joseph, 67
Kristeva, Julia, 78
Kuhlmann, Quirinus, 45–47, 50–53,

56, 59–62, 103, 104, 106, 121,
123

138 INDEX

Kyburz, Hanspeter, 7

Lévi-Strauss, Claude, 78, 80
Lansius, Thomas, 43
Le Lionnais, François, 87, 88, 92
leet speech, 96, 113
Leibniz, Gottfried Wilhelm, 37, 39,

43, 46, 61, 66, 91, 123
Leiris, Michel, 87
Lemaître, Maurice, 89
Leopold, Richard, 81, 82
Lessing, Gotthold Ephraim, 20
Lettrism, 69, 89
Levy, Steven, 25
linguistics, 17, 27, 35, 43–45, 56, 67,

71, 78, 79, 87, 101, 102, 114,
115

Lippard, Lucy, 67
Lisp (programming language), 48,

102, 103
Llull, Ramon, 22, 34–37, 39, 43, 44,

46, 51–53, 69, 73, 80, 84, 103,
109

Logo (programming language), 56
Looking Glass (software), 41
Love, Courtney, 28
Lovecraft, H.P., 7
Lullism, 37–39, 43, 45, 46, 51, 52,

56–59, 61, 62, 66, 71, 79, 84, 87,
88, 91, 101–104, 106, 123

Lutz, Theo, 72, 92

MacLow, Jackson, 73
macrocosm, 23, 43, 45, 52, 55, 62,

66, 74, 75, 86, 104
Madonna, 28
magic, 6, 7, 12–18, 26–29, 33, 39, 44,

52, 70, 75, 77, 84, 85, 89, 101,
114, 115, 119, 123

Magix Musicmaker (software), 13
Maimon, Solomon, 27, 28
Mallarmé, Stéphane, 62–64, 66, 74,

76, 86
malware, 7
Mark V. Chaney (software), 73
Markov chains, 72, 73, 82, 101, 110
Markov, Andrei, 72
MAX (software), 23, 24, 113
McKenzie, Andrew, 114, 115

McLuhan, Marshall, 11, 85, 111
media theory, 11, 85, 86, 91, 95, 120,

122
meme, 17, 122
Mersenne, Marin, 104
Mesolist (software), 76
metaphysics, 7, 39, 46, 49, 52, 62, 63,

66, 67, 74, 75, 86, 89, 106, 123
mez, 9, 10, 12, 97, 98, 116, 117
mezangelle, 9, 10
microcosm, 23, 43, 52, 55, 62, 66, 74,

75, 86, 104
Microsoft (company), 114
Microsoft Windows (operating sys-

tem), 41, 93, 114
MIT (Massachusetts Institute of Tech-

nology), 25, 92, 103
Mix computer, 121
Moles, Abraham M., 67, 69, 90, 91
Morhof, Daniel Georg, 56, 104
Mozilla (software), 73
music, 7, 18, 19, 23–25, 62, 75–77,

83, 88, 91, 101, 104, 110, 112,
113, 122

mysticism, 13, 25, 27, 33, 34, 39, 46,
91

Napoleon, 6, 33
Native Instruments (company), 83
NATO (software), 113
Neoplatonism, 13, 33, 35, 62
net.art, 9, 11, 81, 82, 93, 96, 97, 110–

112, 116, 117, 123
Newton, Isaac, 57
Nezvanova, Netochka, 112–114, 116,

123
Novalis, 61, 62, 66, 86, 91

O’Rourke, Joseph, 72
occult, 13–16, 18, 25, 26, 28, 31, 33,

45, 46, 52, 61, 66, 84, 113–116
Olmi, Ermanno, 80
ontology, 26, 49, 55, 73, 76–78, 80,

85, 106, 112, 121, 123
Optatianus Porfyrius, 42, 43, 74
Oulipo, 70, 72, 87–93, 96, 107, 109–

111, 123

P-Orridge, Genesis, 14, 16

INDEX 139

Paesmans, Dirk, 93
Paik, Nam June, 11, 111
Partition Magic (software), 13
pataphysics, 70, 86–88, 107, 110,

111, 123
Pater, Walter, 20
Peirce, Charles S., 65
Peitgen, Hans Otto, 26
Perec, Georges, 89, 90, 107–111
Perl (programming language), 73, 92,

93, 121
Perl poetry, 73, 122
permutation, 15, 17, 24, 29–31, 33,

34, 37, 39, 40, 42, 43, 45, 46, 48,
51, 52, 62–64, 73, 74, 77, 78, 82,
90, 91, 103, 110, 114

Photoshop (software), 83
Pico della Mirandola, Giovanni, 33,

34
Plato, 40, 59, 85
Plots Unlimited (software), 80, 83
Plunderphonics, 76
POE (software), 73, 110
poetics, 10, 12, 15, 17, 20, 39, 42, 43,

45, 47, 51, 56, 64, 66, 68, 74, 75,
78, 80, 82, 84–86, 88–92, 102,
107, 108

Pound, Ezra, 66
Prehn, Ralf, 81
Propp, Vladimir, 78–80
Pseudo-Longinus, 12
psychogeography, 69, 70, 76, 79, 86,

90, 123
Puckette, Miller, 24
Pure Data (software), 24
Pynchon, Thomas, 30
Pythagorean, 18–27, 33, 39, 62, 66,

69, 74–76, 84, 123

Queneau, Raymond, 87, 88, 90, 109

random, 7, 22, 62, 72–76, 78, 83
Raskin, Jef, 85
recursion, 48, 49, 51, 62, 64, 73, 77,

78, 98, 102
recursive acronym, 48, 120
religion, 7, 13, 28, 35, 39, 55, 61, 77,

87

reverse-engineering, 30, 39, 45, 51,
59

rhetoric, 12, 20–22, 35, 39–45, 51,
52, 56, 104

Rolling Stones, 14
romanticism, 12, 22, 26, 61, 66, 69,

70, 74, 76, 79, 80, 87, 89
Rosenberg, Jim, 76
Rosetta stone, 6, 33
Rosicrucian, 45, 49, 50, 113

Sarbiewski, Kazimierz, 20, 21, 104
satanism, 46
Saussure, Ferdinand de, 27
Scaliger, Julius Caesar, 42, 43, 64, 74
Schönberg, Arnold, 24
Schiller, Friedrich, 12
Schmatz, Ferdinand, 73, 110
Scholem, Gershom, 28
Schwitters, Kurt, 73
science fiction, 6, 7, 12, 106, 116
Scientology, 113–115
scratching, 76
Seagal, Steven, 5, 6, 10, 119
Searle, John R., 104–106, 108
Sefer Yetzirah, 28–31, 34, 36, 37, 39,

45, 52, 62, 74, 119
Sefirot, 28, 33, 34
semantics, 10, 16, 18, 21, 35–37, 41,

42, 46, 48, 51–53, 61, 65, 66,
68, 69, 72, 77, 84, 86, 89, 91,
98, 102, 104, 107, 108, 110, 113,
114, 123

semiotics, 65–67, 78, 80
serial music, 24, 29, 77
serial music, 24
Shakur, Tupac, 96
Shanken, Edward A., 67
Shannon, Claude, 65, 66, 71–73
Shulgin, Alexei, 113
Situationism, 68–70, 79, 86, 87, 89,

91, 92
Snow, C. P., 14
socialfiction.org, 70
Sollfrank, Cornelia, 81, 82, 85, 86
Solomon, 45, 51
Sommerville, Ian, 15
Sondheim, Alan, 96–98
Sonic Foundry (company), 83

140 INDEX

Spears, Britney, 28, 77
speculative, 6, 7, 12, 17, 27, 30, 33,

34, 58–61, 70, 71, 90, 91, 107,
115, 119, 121–123

Stallman, Richard, 6, 48
stochastics, 30, 72, 76–78, 109, 112
Stockhausen, Karlheinz, 24, 25, 77,

84, 88
structuralism, 17, 67, 78–80, 90
Sun (company), 41
Surrealism, 68–70, 75, 79, 86, 87, 93
Suzuki, Daisetz T., 75
Swift, Jonathan, 57–59, 61, 71, 73,

74, 86, 89, 102, 106
syntax, 9, 21, 41, 42, 52, 53, 91, 92,

98, 102, 105, 108, 113

Taylor, Liz, 28
Tel Quel, 78, 90
Terminator (movie), 6
Tesauro, Emanuele, 20, 22
TeX (software), 6, 25
TextMangler (software), 73
Theall, Donald, 11
theosophy, 33, 37, 46, 55, 86, 89, 104
theurgy, 13, 27, 28, 39, 43, 44, 52
Thoens, Barbara, 81
Tillotson, John, 13
Torah, 27, 30–32, 101
Torvalds, Linus, 121
Traktor (software), 83
Transmeta (company), 121
travesty (software), 72, 73
Tukey, John W., 119
Turing, Alan, 30, 56, 70, 88, 106, 121,

123
Tzara, Tristan, 74–78, 81, 82, 101,

123

Ullrichs, Tim, 64
Unix (operating system), 9, 13, 39,

41, 48, 92, 96–98, 110, 119, 120

vaporware, 7, 122
vi (software), 6
Vian, Boris, 87
Vienet, René, 79
virtual reality, 85, 86, 111, 116

virus, 7, 17, 18, 47, 49, 94, 95, 108,
122

Visconti, Luchino, 80
Voynich Manuscript, 6, 7, 10

Wagner, Richard, 62
Wall, Larry, 72, 92, 120
Ward, Adrian, 83, 86
Warhol, Andy, 81
Wark, McKenzie, 95
Web Stalker (software), 115, 116
Weiner, Lawrence, 67
Wiki (software), 70
Wilkins, John, 58
Wilson, Colin, 7
Winckelmann, Johann Joachim, 20
Wolff, Christian, 75

X11 Window System (software), 41
Xerox PARC, 20, 85, 111
xlife (software), 55

Young, La Monte, 47

Zawinsky, Jamie, 73
Zen, 75
ZKM (media arts center), 68

	Chapter 1. Introduction: In Dark Territory
	Chapter 2. Computations of Totality
	Exe.cut[up]able statements
	Magic and religion
	Pythagorean harmony as a cosmological code
	Kabbalah
	Ramon Llull and Lullism
	Rhetoric and poetics
	Combinatory poetry and the occult
	Computation as a figure of thought

	Chapter 3. Computation as Fragmentation
	Gulliver's Travels
	The Library of Babel
	Romanticist combinatorics
	Concrete poetry
	Max Bense and ``information aesthetics''
	Situationism, Surrealism and psychogeography
	Markov chains
	Tristan Tzara and cut-ups
	John Cage's indeterminism
	Italo Calvino and machine-generated literature
	Software as industrialization of art
	Authorship and subjectivity
	Pataphysics and Oulipo
	Abraham M. Moles' computational aesthetics
	Source code poetry
	Jodi
	1337 speech
	Codework

	Chapter 4. Automatisms and Their Constraints
	Artificial Intelligence
	Athanasius Kircher's box
	John Searle's Chinese Room
	Georges Perec's Maschine
	Enzensberger's and Schmatz's / Czernin's poetic machines
	Software dystopia: Jodi
	Software dystopia: Netochka Nezvanova
	From dystopia to new subjectivity

	Chapter 5. What Is Software?
	A cultural definition
	Software as practice
	Software versus hardware
	Conclusion

	References
	List of Figures
	Index

